Non‐parametric bootstrapping of partitioned datasets


Abstract:

Non‐parametric bootstrapping is one of the most commonly used methods for branch support assessment. Unlike Bayesian posterior probability values, which are influenced by a priori data partitioning, non‐parametric bootstrapping is usually applied to unpartitioned (combined) datasets. The resulting bootstrap support values are misleading in that they do not measure how well clades are supported by all the partitions, unless all partitions are equal in size (i.e., number of characters). Since most empirical studies include data partitions that are heterogeneous in size, our current bootstrapping approach for partitioned datasets (i.e., bootstrapping the combined dataset) is not adequate. Here I propose a simple modification to non‐parametric bootstrapping that takes a priori data partitioning into account by obtaining bootstrap replicates for each partition separately and combining them in such a way that the size (i.e …

Año de publicación:

2009

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

      Áreas temáticas de Dewey:

      • Programación informática, programas, datos, seguridad
      Procesado con IAProcesado con IA

      Objetivos de Desarrollo Sostenible:

      • ODS 9: Industria, innovación e infraestructura
      • ODS 17: Alianzas para lograr los objetivos
      • ODS 4: Educación de calidad
      Procesado con IAProcesado con IA

      Contribuidores: