Mostrando 10 resultados de: 32
Publisher
Developments in Mathematics(9)
Australasian Journal of Combinatorics(5)
Utilitas Mathematica(4)
Ars Combinatoria(3)
Discrete Mathematics(2)
Área temáticas
Ciencias de la computación(15)
Principios generales de matemáticas(7)
Matemáticas(6)
Álgebra(4)
Análisis(2)
Área de conocimiento
Teoría de grafos(24)
Optimización matemática(17)
Algoritmo(1)
Ciencias de la computación(1)
Face antimagic labelings of prisms
ArticleAbstract: This paper deals with the problem of labeling the vertices, edges and faces of a plane graph in suchPalabras claves:Autores:Lin Y., Martin Bača, Miller M., Sugeng K.A.Fuentes:scopusEdge-antimagic graphs
ArticleAbstract: For a graph G = (V, E), a bijection g from V (G) ∪ E (G) into { 1, 2, ...,| V (G) | + | E (G) | } isPalabras claves:Edge-antimagic labeling, Edge-weightAutores:Lin Y., Martin Bača, Miller M., Youssef M.Z.Fuentes:scopusEdge-antimagic total labeling of disjoint union of caterpillars
Conference ObjectAbstract: Let G = (V, E) be a finite graph, where V(G) and E(G) are the (non-empty) sets of vertices and edgesPalabras claves:Autores:Dafik D., Martin Bača, Miller M., Ryan J.Fuentes:scopusEdge-antimagic total labelings
Book PartAbstract: This chapter focuses on edge-antimagic graphs under both vertex labelings and total labelings. SuperPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusEdge-magic total labelings
Book PartAbstract: After vertex magic total labelings, this chapter has a focus on edge magic total labelings. LabelingPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusConclusion
Book PartAbstract: The final chapter opens with a brief summary of the book. This is followed by a collection of conjecPalabras claves:Autores:Bustamante S., Fausto O. Sarmiento, Hitchner S.L., Martin Bača, Martinovic M., Miller M., Pizzutilo F., Ryan J., Schelhas J.W., Semaničova-Fenovciková A., Susana Herrero-OlarteFuentes:scopusConstruction of new larger (a, d)-edge antimagic vertex graphs by using adjacency matrices
ArticleAbstract: Let G = G(V,E) be a finite simple undirected graph with vertex set V and edge set E, where {pipe}E{pPalabras claves:Autores:Martin Bača, Miller M., Rahmawati S., Silaban D.R., Sugeng K.A.Fuentes:scopus(a, d)-Edge-antimagic total labelings of caterpillars
Conference ObjectAbstract: For a graph G = (V, E), a bijection g from V(G) ∪E(G) into {1,2,..., |V(G)| + |E(G)|} is called (a,Palabras claves:Autores:Martin Bača, Miller M., Slamin, Sugeng K.A.Fuentes:scopusAntimagic labeling of disjoint union of s-crowns
ArticleAbstract: A graph G is called (a, d)-edge-antimagic total if it admits a labeling of the vertices and edges byPalabras claves:(a,d)-edge-antimagic total labeling, S-crowns, Super (a,d)-edge-antimagic total labelingAutores:Dafik D., Martin Bača, Miller M., Ryan J.Fuentes:scopusAntimagic labeling of the union of two stars
ArticleAbstract: Let G be a graph of order p and size q. An (a, d)-edge-antimagic total labeling of G is a one-to-onePalabras claves:Autores:Dafik D., Martin Bača, Miller M., Ryan J.Fuentes:scopus