Mostrando 10 resultados de: 11
Filtros aplicados
Publisher
Applied Mathematics and Information Sciences(4)
Advances in Difference Equations(1)
Applied Mathematics E - Notes(1)
Axioms(1)
Demonstratio Mathematica(1)
Área temáticas
Análisis(7)
Álgebra(5)
Principios generales de matemáticas(3)
Aritmética(2)
Matemáticas(2)
Área de conocimiento
Optimización matemática(10)
Ecuación diferencial(1)
Ecuación diferencial parcial(1)
Matemáticas aplicadas(1)
Modelo matemático(1)
Objetivos de Desarrollo Sostenible
ODS 4: Educación de calidad(9)
ODS 9: Industria, innovación e infraestructura(9)
ODS 17: Alianzas para lograr los objetivos(8)
ODS 8: Trabajo decente y crecimiento económico(1)
Origen
scopus(11)
A Multi-Index Generalized Derivative; Some Introductory Notes
ArticleAbstract: In this work we present a generalized multi-index derivative, which contains as particular cases, wiPalabras claves:Fractional Calculus, Fractional derivatives and integral, Generalized derivativeAutores:Lugo L.M., Miguel Vivas-Cortez, Samei M.E., Valdes J.E.N.Fuentes:googlescopusHermite–Hadamard Type Inequalities for Coordinated Quasi-Convex Functions via Generalized Fractional Integrals
Book PartAbstract: In this research, we used a generalized fractional integral to create a new Hermite–Hadamard-type inPalabras claves:Autores:Kermausuor S., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopusExtremal solution to generalized differential equations under integral boundary condition
ArticleAbstract: In this article, by utilizing the monotone iterative strategy coupled with the strategy of upper andPalabras claves:Generalized differential equations, Monotone iterative method, Riemann-Stieltjes integral, Upper and lower solutionsAutores:Miguel Vivas-Cortez, Oswalde Larreal, Valdes J.E.N.Fuentes:googlescopusSome Hermite-Hadamard Weighted Integral Inequalities for (h, m)-Convex Modified Functions
ArticleAbstract: In this paper, we establish some new type integral inequalities for differentiable (h, m)-convex modPalabras claves:(h, m)-convex modified functions, Hermite-Hadamard integral inequality, integral operators generalizedAutores:Guerrero J.A., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopusSome existence, uniqueness and stability results of nonlocal random impulsive integro-differential equations
ArticleAbstract: This paper is concerned with random impulsive integro-differential equations with nonlocal conditionPalabras claves:Autores:Hugo Leiva, Jose S.A., Valdes J.E.N., Yukunthorn W.Fuentes:googlescopusSome generalized Hermite–Hadamard–Fejér inequality for convex functions
ArticleAbstract: In this paper, we have established some generalized inequalities of Hermite–Hadamard–Fejér type forPalabras claves:Convex functions, Fractional integrals, Integral inequalitiesAutores:Kórus P., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopusThe Minkowski Inequality for Generalized Fractional Integrals
ArticleAbstract: In this work, the well-known Minkowski inequality is studied, using a generalized fractional integraPalabras claves:fractional integral, Minkowski inequalityAutores:Delgado J.G., Miguel Vivas-Cortez, Reyes E.P., Valdes J.E.N.Fuentes:googlescopusOn Opial-type inequality for a generalized fractional integral operator
ArticleAbstract: This article is aimed at establishing some results concerning integral inequalities of the Opial typPalabras claves:Fractional Calculus, Fractional integral operator, Opial inequalityAutores:Hernandez J.E.H., Martínez F., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopusOn a new generalized integral operator and certain operating properties
ArticleAbstract: In this paper, we present a general definition of a generalized integral operator which contains asPalabras claves:Fractional Calculus, Integral operatorAutores:Guzman P.M., Lugo L.M., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopusOn the Generalized Laplace’s Equation
ArticleAbstract: In this paper, we study the properties and various results of the generalized Laplace Equation, usinPalabras claves:Generalized derivatives and integral, Laplace’s equationAutores:Lugo L.M., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopus