Mostrando 10 resultados de: 58
Filtros aplicados
Publisher
Developments in Mathematics(7)
AKCE International Journal of Graphs and Combinatorics(4)
Electronic Journal of Graph Theory and Applications(4)
Utilitas Mathematica(4)
Acta Mathematica Sinica, English Series(3)
Área temáticas
Ciencias de la computación(39)
Principios generales de matemáticas(10)
Matemáticas(9)
Programación informática, programas, datos, seguridad(6)
Análisis(3)
Origen
scopus(58)
Computation of edge C <inf>4</inf>-irregularity strength of Cartesian product of graphs
ArticleAbstract: If every edge in the graph G is also an edge of a subgraph of G isomorphic to a given graph H we sayPalabras claves:05C70, 05C78, Edge H-irregularity strength, Generalized prism, Grid graph, H-irregular edge labelingAutores:Ahmad A., Martin Bača, Semaničova-Fenovciková A.Fuentes:scopusAntimagic Labelings of Join Graphs
ArticleAbstract: An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to tPalabras claves:Antimagic labeling, Complete multipartite graph, Join graphAutores:Martin Bača, Phanalasy O., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusA method to generate large classes of edge-antimagic trees
ArticleAbstract: A (p, q)-graph G is said to be graceful if the vertices can be assigned the labels {1,2,...,q+ 1} suPalabras claves:Edge-antimagic total labeling, Graceful labeling, Tree, α-labelingAutores:Martin Bača, Semaničova-Fenovciková A., Shafiq M.K.Fuentes:scopusA survey of face-antimagic evaluations of graphs
ArticleAbstract: The concept of face-antimagic labeling of plane graphs was introduced by Mirka Miller in 2003. ThisPalabras claves:Autores:Brankovic L., Jendrol’ S., Lin Y., Martin Bača, Phanalasy O., Ryan J., Semaničova-Fenovciková A., Slamin, Sugeng K.A., Tbaskoro E.Fuentes:scopusConstructions of H-antimagic graphs using smaller edge-antimagic graphs
ArticleAbstract: A simple graph G - (V, E) admits an H-covering if every edge in E belongs at least to one subgraph oPalabras claves:(Super) (a,d)-H-antimagic labeling, H-coveringAutores:Dafik D., Martin Bača, Semaničova-Fenovciková A., Slamin, Tanna D.Fuentes:scopusGraceful and antimagic labelings
Book PartAbstract: This chapter explores the relationship between antimagic labeling and alpha labelings and also the wPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusEntire H-irregularity strength of plane graphs
Conference ObjectAbstract: We investigate an entire H-irregularity strength of plane graphs as a modification of the well-knownPalabras claves:Entire face irregularity strength, Entire H-irregularity strength, Irregularity strengthAutores:Hinding N., Javed A., Martin Bača, Semaničova-Fenovciková A.Fuentes:scopusEdge-antimagic total labelings
Book PartAbstract: This chapter focuses on edge-antimagic graphs under both vertex labelings and total labelings. SuperPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusEdge-magic total labelings
Book PartAbstract: After vertex magic total labelings, this chapter has a focus on edge magic total labelings. LabelingPalabras claves:Autores:Martin Bača, Miller M., Ryan J., Semaničova-Fenovciková A.Fuentes:scopusNote on edge irregular reflexive labelings of graphs
ArticleAbstract: For a graph G, an edge labeling fe:E(G)→{1,2,…,ke} and a vertex labeling fv:V(G)→{0,2,4,…,2kv} are cPalabras claves:Cartesian product of cycles, Cycles, Edge irregular reflexive labeling, Reflexive edge strengthAutores:Irfan M., Martin Bača, Ryan J., Semaničova-Fenovciková A., Tanna D.Fuentes:scopus