Mostrando 9 resultados de: 9
Filtros aplicados
Subtipo de publicación
Article(9)
Publisher
AIMS Mathematics(3)
Axioms(2)
Applied Mathematics and Information Sciences(1)
Fractal and Fractional(1)
Progress in Fractional Differentiation and Applications(1)
Área temáticas
Álgebra(4)
Matemáticas(3)
Probabilidades y matemática aplicada(3)
Geometría(1)
Principios generales de matemáticas(1)
Área de conocimiento
Optimización matemática(9)
Exponential Type p–Convex Function with Some Related Inequalities and their Applications
ArticleAbstract: In this paper, the idea of exponential type p–convex function and its algebraic properties have beenPalabras claves:Convexity, Exponential type convexity, Hermite–Hadamard inequalityAutores:Butt S.I., Kashuri A., Miguel Vivas-Cortez, Nasir J., Tariq M.Fuentes:googlescopusHermite–jensen–mercer-type inequalities via caputo–fabrizio fractional integral for h-convex function
ArticleAbstract: Integral inequalities involving many fractional integral operators are used to solve various fractioPalabras claves:Caputo–Fabrizio fractional integral, Convex function, H-convex function, Hermite–Hadamard inequality, Jensen inequality, Jensen–Mercer inequalityAutores:Kashuri A., Miguel Vivas-Cortez, Sajid S., Saleem M.S., Zahoor M.S.Fuentes:googlescopusOn some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities
ArticleAbstract: In this work, we introduce generalized Raina fractional integral operators and derive Chebyshev-typePalabras claves:Approximation techniques, Chebyshev inequality, Fractional-order integrals, Generalized Raina integral operators, Integral inequalitiesAutores:Hamed Y.S., Hernández J.E.H., Kashuri A., Macías-Díaz J.E., Miguel Vivas-Cortez, Mohammed P.O.Fuentes:googlescopusTrapezium-type AB−fractional Integral Inequalities Using Generalized Convex and Quasi Φ−Convex Functions
ArticleAbstract: The Hermite-Hadamard inequality and an identity for AB−fractional integrals are demonstrated in thisPalabras claves:Ab-fractional integrals, Convexity, Hermite-hadamard inequality, Hölder inequality, Mittag-leffler function, Power mean inequalityAutores:Hernández J.E.H., Kashuri A., Miguel Vivas-CortezFuentes:googlescopusTrapezium-type inequalities for raina’s fractional integrals operator using generalized convex functions
ArticleAbstract: The authors have reviewed a wide production of scientific articles dealing with the evolution of thePalabras claves:Generalized convexity, Hermite–Hadamard inequality, Hölder inequality, Power mean inequality, Raina’s fractional integral operatorAutores:Hernández J.E.H., Kashuri A., Miguel Vivas-CortezFuentes:googlescopusQuantum trapezium-type inequalities using generalized ϕ-convex functions
ArticleAbstract: In this work, a study is conducted on the Hermite-Hadamard inequality using a class of generalized cPalabras claves:Generalized convexity, Hermite-hadamard inequality, Quantum estimates, Special functionsAutores:Hernández J.E.H., Kashuri A., Liko R., Miguel Vivas-CortezFuentes:googlescopusSome new generalized κ–fractional hermite–hadamard–mercer type integral inequalities and their applications
ArticleAbstract: In this paper, we have established some new Hermite–Hadamard–Mercer type of inequalities by using κ–Palabras claves:Error estimation, Hermite–Hadamard inequality, Hölder’s inequality, Jensen–Mercer inequality, Power mean inequality, special meansAutores:Awan M.U., Javed M.Z., Kashuri A., Miguel Vivas-Cortez, Noor K.I., Noor M.A.Fuentes:googlescopusSome new post-quantum integral inequalities involving twice (P, q)-differentiable ψ-preinvex functions and applications
ArticleAbstract: The main motivation of this article is derive a new post-quantum integral identity using twice (p, qPalabras claves:bounded functions, Hermite–Hadamard inequality, Hölder’s inequality, Post-quantum calculus, Power mean inequality, special means, ψ-preinvex functionsAutores:Awan M.U., Kashuri A., Miguel Vivas-Cortez, Noor M.A., Talib S.Fuentes:googlescopusSome novel inequalities involving Atangana-Baleanu fractional integral operators and applications
ArticleAbstract: As we know, Atangana and Baleanu developed great fractional integral operators which used the generaPalabras claves:Atangana-Baleanu fractional integrals, bounded functions, higher order strongly n-polynomial convex, Hölder’s inequality, Power mean inequality, special meansAutores:Awan M.U., Javed M.Z., Kashuri A., Miguel Vivas-Cortez, Rafique S.Fuentes:googlescopus