Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Article(4)
Área temáticas
Geología, hidrología, meteorología(2)
Ciencias de la computación(1)
Física aplicada(1)
Ingeniería sanitaria(1)
Métodos informáticos especiales(1)
Assessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model
ArticleAbstract: Discharge forecasting is a key component for early warning systems and extremely useful for decisionPalabras claves:Andes, Discharge forecasting, Machine learning, Mountain region, Native radar data, Radar rainfall, Radar reflectivity, X-bandAutores:Bendix J., Contreras P., Johanna Orellana-Alvear, Paul Muñoz, Rolando Enrique Célleri Alvear, Rollenbeck R.Fuentes:googlescopusFlood early warning systems using machine learning techniques: The case of the tomebamba catchment at the southern Andes of Ecuador
ArticleAbstract: Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systePalabras claves:Andes, Flood early warning, forecasting, hydrological extremes, Machine learningAutores:Bendix J., Jan Jozef Albert Feyen, Johanna Orellana-Alvear, Paul Muñoz, Rolando Enrique Célleri AlvearFuentes:googlescopusDynamic mapping of evapotranspiration using an energy balance-based model over an andean páramo catchment of southern ecuador
ArticleAbstract: Understanding of evapotranspiration (ET) processes over Andean mountain environments is crucial, parPalabras claves:Andes, ECUADOR, Evapotranspiration, Landsat, Metric, Modis, Paramo, remote sensing, Tropical mountainsAutores:Bendix J., Galo José Carrillo Rojas, Mário Andrés Cordova Mora, Mario Guallpa, Rolando Enrique Célleri Alvear, Silva B.Fuentes:googlerraaescopusOptimization of X-band radar rainfall retrieval in the southern Andes of Ecuador using a random forest model
ArticleAbstract: Despite many efforts of the radar community, quantitative precipitation estimation (QPE) from weathePalabras claves:Andes, MACHINE-LEARNING, Mountain region, Radar, rainfall retrieval, X-bandAutores:Bendix J., Johanna Orellana-Alvear, Rolando Enrique Célleri Alvear, Rollenbeck R.Fuentes:googlescopus