Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(2)
IEEE Transactions on Broadcasting(1)
International Journal of Electronics(1)
Área temáticas
Física aplicada(3)
Ciencias de la computación(2)
Comunicaciones(1)
Educación superior(1)
Métodos informáticos especiales(1)
Área de conocimiento
Energía(2)
Algoritmo(1)
Aprendizaje automático(1)
Ciencias de la computación(1)
Optimización matemática(1)
Origen
scopus(4)
Cluster-Head Selection for Energy-Harvesting IoT Devices in Multi-tier 5G Cellular Networks
Conference ObjectAbstract: Fifth-generation cellular networks promise to interconnect a wide variety of wireless devices, suchPalabras claves:5g networks, internet of things, LEACH, Multilayer Perceptron, Network lifetimeAutores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopusOptimised power allocation for a power beacon-assisted SWIPT system with a power-splitting receiver
ArticleAbstract: This article studies a power beacon (PB)-assisted simultaneous wireless information and power transfPalabras claves:convex optimisation, energy harvesting, power beacon, power splitting, SWIPTAutores:Koo I., Mario R. Camana, Tuan P.V.Fuentes:scopusParticle Swarm Optimization-Based Power Allocation Scheme for Secrecy Sum Rate Maximization in NOMA with Cooperative Relaying
Conference ObjectAbstract: In this paper, we study a particle swarm optimization (PSO)-based power allocation scheme for physicPalabras claves:Cooperative relaying, Non-orthogonal multiple-access, Orthogonal multiple access, Particle Swarm Optimization, Physical-layer security, Secrecy sum rateAutores:Koo I., Mario R. Camana, Moreta C.E.G., Rahman M.Fuentes:scopusPbkp_rediction of digital terrestrial television coverage using machine learning regression
ArticleAbstract: Appropriate coverage pbkp_rediction is a fundamental task for an operator during the dimensioning prPalabras claves:AdaBoost regressor, Digital terrestrial television, K-nearest neighbors (KNN) regression, Random forest regressionAutores:Koo I., Mario R. Camana, Moreta C.E.G.Fuentes:scopus