Mostrando 4 resultados de: 4
Filtros aplicados
Publisher
Advances in Science, Technology and Engineering Systems(1)
International Conference on Systems, Signals, and Image Processing(1)
Proceedings - IEEE Symposium on Computer-Based Medical Systems(1)
Proceedings of the IEEE International Conference on Industrial Technology(1)
Área temáticas
Enfermedades(2)
Medicina y salud(2)
El libro(1)
Funcionamiento de bibliotecas y archivos(1)
Métodos informáticos especiales(1)
Origen
scopus(4)
Towards the automated segmentation of epicardial and mediastinal fats: A multi-manufacturer approach using intersubject registration and random forest
Conference ObjectAbstract: The amount of fat on the surroundings of the heart is correlated to several health risk factors suchPalabras claves:adipose tissue, automatic, cardiac, classification, Epicardial, FAT, heart, Intersubject, Mediastinal, Multi-manufacturer, random forest, Registration, segmentationAutores:Conci A., María Perez, Morais F.F.C., Rodrigues E.O.Fuentes:scopusTransfer Learning in Breast Mammogram Abnormalities Classification with Mobilenet and Nasnet
Conference ObjectAbstract: Breast cancer has an important incidence in women mortality worldwide. Currently, mammography is conPalabras claves:deep learning, digital mammogram, image pre-processing, Machine learning, Transfer learningAutores:Lenin G. Falconi, María Perez, Wilbert G. AguilarFuentes:scopusTransfer learning and fine tuning in breast mammogram abnormalities classification on CBIS-DDSM database
ArticleAbstract: Breast cancer has an important incidence in women mortality worldwide. Currently, mam-mography is coPalabras claves:convolutional neural networks, FINE TUNING, Mammogram classification, Transfer learningAutores:Conci A., Lenin G. Falconi, María Perez, Wilbert G. AguilarFuentes:scopusTransfer learning and fine tuning in mammogram bi-rads classification
Conference ObjectAbstract: The BI-RADS report system is widely used by radiologists and clinicians to document relevant findingPalabras claves:BI-RADS classification, Breast Cancer, deep learning, FINE TUNING, image pre-processing, Mammography, Transfer learningAutores:Conci A., Lenin G. Falconi, María Perez, Wilbert G. AguilarFuentes:scopus