Mostrando 10 resultados de: 25
Filtros aplicados
Publisher
Applied Mathematics and Information Sciences(6)
AIMS Mathematics(4)
Symmetry(4)
Axioms(3)
Entropy(3)
Área temáticas
Álgebra(17)
Análisis(12)
Aritmética(4)
Probabilidades y matemática aplicada(4)
Matemáticas(3)
Fractional identities involving exponential kernel and associated fractional trapezium like inequalities
ArticleAbstract: The main objective of this paper is to derive some new variants of trapezium like inequalities involPalabras claves:Convex, Exponential, fractional, preinvex, trapezium inequalitiesAutores:Awan M.U., Miguel Vivas-Cortez, Noor M.A., Talib S., Ye G.Fuentes:googlescopusGeneralized (p, q)-analogues of Dragomir-Agarwal’s inequalities involving Raina’s function and applications
ArticleAbstract: In this paper, we introduce the class of generalized strongly convex functions using Raina’s functioPalabras claves:Dragomir-Agarwal’s inequality, generalized strongly convex functions, Hölder inequality, Post-quantum calculus, power-mean inequality, Raina’s functionAutores:Awan M.U., Javed M.Z., Kashuri A., Miguel Vivas-Cortez, Noor M.A.Fuentes:googlescopusGeneralized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions
ArticleAbstract: In this article, we introduce the notions of generalized fractional integrals for the interval-valuePalabras claves:co-ordinated convex, fractional integral, H-H inclusion, integral inclusions, IVFsAutores:Ali M.A., Budak H., Chasreechai S., Kara H., Miguel Vivas-CortezFuentes:googlescopusNew ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula
ArticleAbstract: In this paper we establish new Ostrowski type inequalities related to the notion s-ϕ-convex functionPalabras claves:Ostrowski inequality, S-convex function, S-ϕ -convex function b, S-ϕ-convex function, ϕ-convex functionAutores:Agarwal P., Ali M.A., Miguel Vivas-Cortez, Yenny Rangel-OliverosFuentes:googlescopusNew parameterized inequalities for η-quasiconvex functions via (P, q)-calculus
ArticleAbstract: In this work, first, we consider novel parameterized identities for the left and right part of the (Palabras claves:Parameterized (p, q)-estimates for midpoint and trapezoidal type inequalities, Post quantum calculus, Quantum calculus, η-quasiconvexityAutores:Agarwal P., Idrees M., Kalsoom H., Miguel Vivas-CortezFuentes:googlescopusHermite–Hadamard Type Inequalities for Coordinated Quasi-Convex Functions via Generalized Fractional Integrals
Book PartAbstract: In this research, we used a generalized fractional integral to create a new Hermite–Hadamard-type inPalabras claves:Autores:Kermausuor S., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopusOn (m, h<inf>1</inf>,h<inf>2</inf>)-Convex stochastic processes using fractional integral operator
ArticleAbstract: We consider and study a new class of convex stochastic processes, called (m, h1,h2)-convex stochastiPalabras claves:(m, h ,h )-convex stochastic processes 1 2, Ostrowski inequalityAutores:Hernández J.E.H., Miguel Vivas-CortezFuentes:scopusOn Generalization of Different Integral Inequalities for Harmonically Convex Functions
ArticleAbstract: In this study, we first prove a parameterized integral identity involving differentiable functions.Palabras claves:Harmonically convex functions, Midpoint and trapezoidal inequality, Simpson’s inequalityAutores:Ali M.A., Miguel Vivas-Cortez, Reunsumrit J., Sitthiwirattham T.Fuentes:googlescopusOn Non Conformable Fractional Laplace Transform
ArticleAbstract: In the present paper, the main theorems of the classical Laplace transform are generalized in the noPalabras claves:Fractional Calculus, Laplace fractional transformAutores:Herndndez J.E.H., Miguel Vivas-Cortez, Oswalde Larreal, Valdes J.E.N., Velasco J.V.Fuentes:googlescopusOn a new generalized integral operator and certain operating properties
ArticleAbstract: In this paper, we present a general definition of a generalized integral operator which contains asPalabras claves:Fractional Calculus, Integral operatorAutores:Guzman P.M., Lugo L.M., Miguel Vivas-Cortez, Valdes J.E.N.Fuentes:googlescopus