Mostrando 9 resultados de: 9
Filtros aplicados
Publisher
Engineering Applications of Artificial Intelligence(2)
Applied Intelligence(1)
Computer-Aided Civil and Infrastructure Engineering(1)
FTC 2016 - Proceedings of Future Technologies Conference(1)
Proceedings of the 29th European Safety and Reliability Conference, ESREL 2019(1)
Área de conocimiento
Ciencias de la computación(3)
Material compuesto(2)
Optimización matemática(2)
Aprendizaje automático(1)
Ciencia de materiales(1)
Origen
scopus(9)
An information theoretic approach for knowledge representation using Petri nets
Conference ObjectAbstract: A new hybrid approach for Petri nets (PNs) is proposed in this paper by combining the PNs principlesPalabras claves:Expert systems, Knowledge Representation, Petri netsAutores:Andrews J., Juan Chiachío, Prescott D., Ruano M.C.Fuentes:scopusA panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: progress and prospects
ArticleAbstract: The17 Sustainable Development Goals (SDGs) established by the United Nations Agenda 2030 constitutePalabras claves:Artificial Intelligence, Emerging digital technologies, SUSTAINABLE DEVELOPMENT GOALSAutores:Alonso S., de Vargas J.P., Fernández B., García-Moral P., Herrera F., Juan Chiachío, Marchena R., Martínez-Cámara E., Melero F.J., Molina D., Montes R., Moral C., Palomares I., Ruano M.C.Fuentes:scopusApproximate bayesian computation by subset simulation
ArticleAbstract: A new approximate Bayesian computation (ABC) algorithm for Bayesian updating of model parameters isPalabras claves:Approximate Bayesian Computation, Bayesian inverse problem, Subset simulationAutores:Beck J.L., Juan Chiachío, Ruano M.C., Rus G.Fuentes:scopusOptimal ultrasonic sensor configuration based on value of information
Conference ObjectAbstract: Optimal sensor configuration has been proven to be essential in the design of structural health moniPalabras claves:Bayesian inverse problem, Guided-waves, optimal sensor configuration, SHM, Ultrasound, Value of informationAutores:Cantero-Chinchilla S., Juan Chiachío, Ruano M.C.Fuentes:scopusIntegration of prognostics at a system level: A Petri net approach
Conference ObjectAbstract: This paper presents a mathematical framework for modelingprognostics at a system level, by combiningPalabras claves:Autores:Andrews J., Juan Chiachío, Ruano M.C., Sankararam S.Fuentes:scopusIntelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM data
ArticleAbstract: A health indicator (HI) is a valuable index demonstrating the health level of an engineering systemPalabras claves:Composite structures, Intelligent health indicator, Prognostic and health management, Semi-supervised deep neural network, Structural Health MonitoringAutores:Benedictus R., Broer A., Juan Chiachío, Loutas T.H., Moradi M., Zarouchas D.Fuentes:scopusUncertainty quantification in Neural Networks by Approximate Bayesian Computation: Application to fatigue in composite materials
ArticleAbstract: Modern machine learning algorithms excel in a great variety of tasks, but at the same time, it is alPalabras claves:Approximate Bayesian Computation, Bayesian Neural Network, Gradient-free training, Non-parametric formulation, Subset simulation, uncertainty quantificationAutores:Fernández J., Herrera F., Juan Chiachío, Munoz R., Ruano M.C.Fuentes:scopusReduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation
ArticleAbstract: The accurate modeling of engineering systems and processes using Petri nets often results in complexPalabras claves:Approximate Bayesian Computation, Bayesian inference, Maintenance models, Model similarity, Petri netsAutores:Andrews J., Juan Chiachío, Naybour S., Ruano M.C., Saleh A.Fuentes:scopusPlausible Petri nets as self-adaptive expert systems: A tool for infrastructure asset monitoring
ArticleAbstract: This article provides a computational framework to model self-adaptive expert systems using the PetrPalabras claves:Autores:Andrews J., Juan Chiachío, Prescott D., Ruano M.C.Fuentes:scopus