Mostrando 3 resultados de: 3
Filtros aplicados
Subtipo de publicación
Article(3)
Área temáticas
Ciencias de la computación(2)
Física aplicada(1)
Ingeniería y operaciones afines(1)
Tecnología (Ciencias aplicadas)(1)
Área de conocimiento
Material compuesto(2)
Aprendizaje automático(1)
Ciencia de materiales(1)
Red neuronal artificial(1)
Origen
scopus(3)
Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM data
ArticleAbstract: A health indicator (HI) is a valuable index demonstrating the health level of an engineering systemPalabras claves:Composite structures, Intelligent health indicator, Prognostic and health management, Semi-supervised deep neural network, Structural Health MonitoringAutores:Benedictus R., Broer A., Juan Chiachío, Loutas T.H., Moradi M., Zarouchas D.Fuentes:scopusPhysics-guided Bayesian neural networks by ABC-SS: Application to reinforced concrete columns
ArticleAbstract: This manuscript proposes a physics-guided Bayesian neural network, which combines Approximate-BayesiPalabras claves:Approximate Bayesian Computation, Hybrid models, Physics-guided neural networks, Shear-capacity evaluation, uncertainty quantificationAutores:Corbetta M., Fernández J., José Barros, Juan Chiachío, Ruano M.C.Fuentes:scopusUncertainty quantification in Neural Networks by Approximate Bayesian Computation: Application to fatigue in composite materials
ArticleAbstract: Modern machine learning algorithms excel in a great variety of tasks, but at the same time, it is alPalabras claves:Approximate Bayesian Computation, Bayesian Neural Network, Gradient-free training, Non-parametric formulation, Subset simulation, uncertainty quantificationAutores:Fernández J., Herrera F., Juan Chiachío, Munoz R., Ruano M.C.Fuentes:scopus