Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Article(4)
Assessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model
ArticleAbstract: Discharge forecasting is a key component for early warning systems and extremely useful for decisionPalabras claves:Andes, Discharge forecasting, Machine learning, Mountain region, Native radar data, Radar rainfall, Radar reflectivity, X-bandAutores:Bendix J., Contreras P., Johanna Orellana-Alvear, Paul Muñoz, Rolando Enrique Célleri Alvear, Rollenbeck R.Fuentes:googlescopusFlash-flood forecasting in an andean mountain catchment-development of a step-wise methodology based on the random forest algorithm
ArticleAbstract: Flash-flood forecasting has emerged worldwide due to the catastrophic socio-economic impacts this haPalabras claves:Flash-flood, forecasting, Lag analysis, Machine learning, Precipitation-runoff, random forestAutores:Johanna Orellana-Alvear, Patrick Willems, Paul Muñoz, Rolando Enrique Célleri AlvearFuentes:googlescopusFlood early warning systems using machine learning techniques: The case of the tomebamba catchment at the southern Andes of Ecuador
ArticleAbstract: Worldwide, machine learning (ML) is increasingly being used for developing flood early warning systePalabras claves:Andes, Flood early warning, forecasting, hydrological extremes, Machine learningAutores:Bendix J., Jan Jozef Albert Feyen, Johanna Orellana-Alvear, Paul Muñoz, Rolando Enrique Célleri AlvearFuentes:googlescopusInfluence of random forest hyperparameterization on short-term runoff forecasting in an andean mountain catchment
ArticleAbstract: The Random Forest (RF) algorithm, a decision-tree-based technique, has become a promising approach fPalabras claves:Machine learning, Optimal hyperparameters, random forest, Runoff forecasting, Tropical AndesAutores:Bendix J., Contreras P., Johanna Orellana-Alvear, Paul Muñoz, Rolando Enrique Célleri AlvearFuentes:googlescopus