Mostrando 5 resultados de: 5
Filtros aplicados
Publisher
Current Topics in Medicinal Chemistry(1)
International Journal of Molecular Sciences(1)
Journal of Chemical Information and Modeling(1)
Journal of Proteome Research(1)
Nanoscale(1)
Área temáticas
Farmacología y terapéutica(2)
Bioquímica(1)
Fisiología y materias afines(1)
Funcionamiento de bibliotecas y archivos(1)
Medicina y salud(1)
Chromosome Gene Orientation Inversion Networks (GOINs) of Plasmodium Proteome
ArticleAbstract: The spatial distribution of genes in chromosomes seems not to be random. For instance, only 10% of gPalabras claves:chromosome microstructure, complex networks, gene orientation, Machine learning, MALARIA, Plasmodium sp. proteomeAutores:Bernabé Ortega-Tenezaca, González‐díaz H., Quevedo‐tumailli V.Fuentes:scopusIFPTML mapping of nanoparticle antibacterial activity: Vs. pathogen metabolic networks
ArticleAbstract: Nanoparticles are useful antimicrobial drug-release systems, but some nanoparticles also exhibit antPalabras claves:Autores:Bernabé Ortega-Tenezaca, González‐díaz H.Fuentes:scopusIfptml mapping of drug graphs with protein and chromosome structural networks vs. Pre‐clinical assay information for discovery of antimalarial compounds
ArticleAbstract: The parasite species of genus Plasmodium causes Malaria, which remains a major global health problemPalabras claves:Antimalarial compounds, CHEMBL, complex networks, Machine learning, NCBI‐GDV, perturbation theory, Plasmodium proteome, UniProtAutores:Bernabé Ortega-Tenezaca, González‐díaz H., Quevedo‐tumailli V.Fuentes:scopusPbkp_rediction of Antileishmanial Compounds: General Model, Preparation, and Evaluation of 2-Acylpyrrole Derivatives
ArticleAbstract: In this work, the SOFT.PTML tool has been used to pre-process a ChEMBL dataset of pre-clinical assayPalabras claves:Autores:Arrasate S., Barbolla I., Bernabé Ortega-Tenezaca, Dea-Ayuela M.A., Fundora-Ortiz B., González‐díaz H., Lete E., Santiago C., Sotomayor N.Fuentes:scopusPtml multi-label algorithms: Models, software, and applications
ReviewAbstract: By combining Machine Learning (ML) methods with Perturbation Theory (PT), it is possi-ble to developPalabras claves:Cheminformatics, Drug Discovery, Large data sets, Machine learning, Multi-target models, perturbation theory, PTMLAutores:Arrasate S., Bediaga H., Bernabé Ortega-Tenezaca, Collados J., González‐díaz H., Madariaga G., Munteanu C.R., Natalia Dias Soeiro Cordeiro M., Quevedo‐tumailli V.Fuentes:scopus