Mostrando 9 resultados de: 9
Filtros aplicados
Subtipo de publicación
Article(9)
Publisher
Food Chemistry(3)
Journal of Agricultural and Food Chemistry(2)
Critical Reviews in Food Science and Nutrition(1)
Frontiers in Microbiology(1)
Journal of the Science of Food and Agriculture(1)
Área temáticas
Microorganismos, hongos y algas(5)
Alimentación y bebidas(4)
Farmacología y terapéutica(2)
Fisiología humana(2)
Fisiología y materias afines(2)
Origen
scopus(9)
Characterization of the binding capacity of mercurial species in Lactobacillus strains
ArticleAbstract: BACKGROUND: Metal sequestration by bacteria has been proposed as a strategy to counteract metal contPalabras claves:Biosorption, cell wall, LACTOBACILLUS, Mercury, methylmercuryAutores:Alcántara C., Carlos Jadán-Piedra, Devesa V., Monedero V., Vélez D., Zúñiga M.Fuentes:scopusDietary compounds as modulators of metals and metalloids toxicity
ArticleAbstract: A large part of the population is exposed to metals and metalloids through the diet. Most of the inPalabras claves:arsenic, Cadmium, diet, lead, Mercury, Toxicity, toxicokineticsAutores:Carlos Jadán-Piedra, Chiocchetti G.M., Clemente M.J., Devesa V., Vélez D.Fuentes:scopusIn vitro evaluation of dietary compounds to reduce mercury bioavailability
ArticleAbstract: Mercury in foods, in inorganic form [Hg(II)] or as methylmercury (CH3Hg), can have adverse effects.Palabras claves:Bioavailability, Dietary strategies, FOOD, Mercury, swordfishAutores:Carlos Jadán-Piedra, Devesa V., Vélez D.Fuentes:scopusInfluence of Physiological Gastrointestinal Parameters on the Bioaccessibility of Mercury and Selenium from Swordfish
ArticleAbstract: Swordfish tend to accumulate mercury (Hg), but they are rich in selenium (Se), an element that can cPalabras claves:Bioaccessibility, Mercury, molar ratio Hg/Se, selenium, swordfishAutores:Carlos Jadán-Piedra, Clemente M.J., Devesa V., Vélez D.Fuentes:scopusToxic trace elements in dried mushrooms: Effects of cooking and gastrointestinal digestion on food safety
ArticleAbstract: Mushrooms can accumulate toxic trace elements. The objectives of the present study are to evaluate lPalabras claves:arsenic, Bioaccessibility, Cadmium, Cooking, lead, Mercury, MushroomsAutores:Carlos Jadán-Piedra, Chiocchetti G.M., Clemente M.J., Devesa V., Latorre T., Vélez D.Fuentes:scopusUse of Saccharomyces cerevisiae to Reduce the Bioaccessibility of Mercury from Food
ArticleAbstract: Food is the main pathway of exposure to inorganic mercury [Hg(II)] and methylmercury (CH3Hg). IntestPalabras claves:Bioaccessibility, Mercury, Mushrooms, Saccharomyces Cerevisiae, SeafoodAutores:Baquedano M., Carlos Jadán-Piedra, Devesa V., Puig S., Vélez D.Fuentes:scopusReduction of mercury bioaccessibility using dietary strategies
ArticleAbstract: Food is the main source of mercury for most people. To promote its toxic effect, ingested mercury muPalabras claves:Bioaccessibility, Dietary components, Mercury, swordfish, TunaAutores:Carlos Jadán-Piedra, Devesa V., Sánchez V., Vélez D.Fuentes:scopusPolyphosphate in Lactobacillus and its link to stress tolerance and probiotic properties
ArticleAbstract: The synthesis of the inorganic polymer polyphosphate (poly-P) in bacteria has been linked to stressPalabras claves:LACTOBACILLUS, Mercury, polyphosphate, Polyphosphate kinase, probioticAutores:Alcántara C., Carlos Jadán-Piedra, Coll-Marqués J.M., Devesa V., Monedero V., Vélez D., Zúñiga M.Fuentes:scopusThe use of lactic acid bacteria to reduce mercury bioaccessibility
ArticleAbstract: Mercury in food is present in either inorganic [Hg(II)] or methylmercury (CH3Hg) form. Intestinal abPalabras claves:Bioaccessibility, lactic acid bacteria, Mercury, methylmercury, Mushrooms, SeafoodAutores:Alcántara C., Carlos Jadán-Piedra, Devesa V., Monedero V., Vélez D., Zúñiga M.Fuentes:scopus