Mostrando 10 resultados de: 25
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(5)
Neural Processing Letters(3)
2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018(2)
Advances in Intelligent Systems and Computing(2)
2016 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2016 - Proceedings(1)
Área temáticas
Ciencias de la computación(15)
Métodos informáticos especiales(12)
Física aplicada(8)
Programación informática, programas, datos, seguridad(8)
Funcionamiento de bibliotecas y archivos(2)
Área de conocimiento
Ciencias de la computación(15)
Red neuronal artificial(10)
Aprendizaje automático(7)
Algoritmo(5)
Inteligencia artificial(4)
Origen
scopus(25)
Committee c-mantec: A probabilistic constructive neural network
Conference ObjectAbstract: C-Mantec is a recently introduced constructive algorithm that generates compact neural architecturesPalabras claves:Committee networks, Constructive Neural Networks, Supervised classificationAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., José Luis Subirats, Luque-Baena R.M., Urda D.Fuentes:scopusDeep neural network architecture implementation on FPGAs using a layer multiplexing scheme
Conference ObjectAbstract: In recent years pbkp_redictive models based on Deep Learning strategies have achieved enormous succePalabras claves:Deep Neural Networks, Fpga, Hardware implementation, Layer multiplexing, Supervised learningAutores:Francisco Ortega-Zamorano, Franco L., Gómez I., Jerez-Aragonés J.M.Fuentes:scopusExploratory Data Analysis and Foreground Detection with the Growing Hierarchical Neural Forest
ArticleAbstract: In this paper, a new self-organizing artificial neural network called growing hierarchical neural foPalabras claves:Clustering, image segmentation, Self-Organization, TEXT MININGAutores:Benítez-Rochel R., Esteban José Palomo, Francisco Ortega-Zamorano, López-Rubio E.Fuentes:scopusFPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Model
ArticleAbstract: A two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in aPalabras claves:Hardware implementation, Ising model, LFSR random number generator, Monte Carlo simulationsAutores:Cannas S.A., Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Montemurro M.A.Fuentes:scopusFPGA Implementation of Neurocomputational Models: Comparison Between Standard Back-Propagation and C-Mantec Constructive Algorithm
ArticleAbstract: Recent advances in FPGA technology have permitted the implementation of neurocomputational models, mPalabras claves:Constructive Neural Networks, Fpga, Hardware implementationAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Juárez G.E.Fuentes:scopusFPGA implementation comparison between C-mantec and back-propagation neural network algorithms
Conference ObjectAbstract: Recent advances in FPGA technology have permitted the implementation of neurocomputational models, mPalabras claves:Constructive Neural Networks, Fpga, Hardware implementationAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Juárez G.E.Fuentes:scopusFPGA implementation of the c-mantec neural network constructive algorithm
ArticleAbstract: Competitive majority network trained by error correction (C-Mantec), a recently proposed constructivPalabras claves:Circuit complexity, constructive neural networks (CoNN), on-chip learning, Threshold networksAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M.Fuentes:scopusEfficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers
ArticleAbstract: The well-known backpropagation learning algorithm is implemented in a field-programmable gate arrayPalabras claves:Embedded Systems, field-programmable gate array (FPGA), Hardware implementation, Microcontrollers, Supervised learningAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Luque-Baena R.M., Urda D.Fuentes:scopusDigital cryptography implementation using neurocomputational model with autoencoder architecture
Conference ObjectAbstract: An Autoencoder is an artificial neural network used for unsupervised learning and for dimensionalityPalabras claves:Artificial Neural Network, ASCII Characters, Autoencoder, CryptographyAutores:Francisco Ortega-Zamorano, Francisco Quinga Socasi, Luis Zhinin-Vera, Oscar Chang, Rafael Valencia-Ramos, Ronny Xavier VelasteguíFuentes:scopusHigh precision FPGA implementation of neural network activation functions
Conference ObjectAbstract: The efficient implementation of artificial neural networks in FPGA boards requires tackling severalPalabras claves:Autores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Juárez G.E., Perez J.O.Fuentes:scopus