Mostrando 10 resultados de: 15
Filtros aplicados
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(4)
Neural Processing Letters(3)
Engineering Applications of Artificial Intelligence(1)
ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence(1)
IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - IES 2014: 2014 IEEE Symposium on Intelligent Embedded Systems, Proceedings(1)
Área temáticas
Física aplicada(6)
Métodos informáticos especiales(5)
Programación informática, programas, datos, seguridad(3)
Ciencias políticas (Política y gobierno)(1)
Enfermedades(1)
Área de conocimiento
Ciencias de la computación(11)
Red neuronal artificial(5)
Aprendizaje automático(4)
Inteligencia artificial(3)
Simulación por computadora(3)
Origen
scopus(15)
Committee c-mantec: A probabilistic constructive neural network
Conference ObjectAbstract: C-Mantec is a recently introduced constructive algorithm that generates compact neural architecturesPalabras claves:Committee networks, Constructive Neural Networks, Supervised classificationAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., José Luis Subirats, Luque-Baena R.M., Urda D.Fuentes:scopusExploratory Data Analysis and Foreground Detection with the Growing Hierarchical Neural Forest
ArticleAbstract: In this paper, a new self-organizing artificial neural network called growing hierarchical neural foPalabras claves:Clustering, image segmentation, Self-Organization, TEXT MININGAutores:Benítez-Rochel R., Esteban José Palomo, Francisco Ortega-Zamorano, López-Rubio E.Fuentes:scopusFPGA Hardware Acceleration of Monte Carlo Simulations for the Ising Model
ArticleAbstract: A two-dimensional Ising model with nearest-neighbors ferromagnetic interactions is implemented in aPalabras claves:Hardware implementation, Ising model, LFSR random number generator, Monte Carlo simulationsAutores:Cannas S.A., Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Montemurro M.A.Fuentes:scopusFPGA Implementation of Neurocomputational Models: Comparison Between Standard Back-Propagation and C-Mantec Constructive Algorithm
ArticleAbstract: Recent advances in FPGA technology have permitted the implementation of neurocomputational models, mPalabras claves:Constructive Neural Networks, Fpga, Hardware implementationAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Juárez G.E.Fuentes:scopusFPGA implementation comparison between C-mantec and back-propagation neural network algorithms
Conference ObjectAbstract: Recent advances in FPGA technology have permitted the implementation of neurocomputational models, mPalabras claves:Constructive Neural Networks, Fpga, Hardware implementationAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Juárez G.E.Fuentes:scopusFPGA implementation of the c-mantec neural network constructive algorithm
ArticleAbstract: Competitive majority network trained by error correction (C-Mantec), a recently proposed constructivPalabras claves:Circuit complexity, constructive neural networks (CoNN), on-chip learning, Threshold networksAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M.Fuentes:scopusEfficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers
ArticleAbstract: The well-known backpropagation learning algorithm is implemented in a field-programmable gate arrayPalabras claves:Embedded Systems, field-programmable gate array (FPGA), Hardware implementation, Microcontrollers, Supervised learningAutores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Luque-Baena R.M., Urda D.Fuentes:scopusDigital cryptography implementation using neurocomputational model with autoencoder architecture
Conference ObjectAbstract: An Autoencoder is an artificial neural network used for unsupervised learning and for dimensionalityPalabras claves:Artificial Neural Network, ASCII Characters, Autoencoder, CryptographyAutores:Francisco Ortega-Zamorano, Francisco Quinga Socasi, Luis Zhinin-Vera, Oscar Chang, Rafael Valencia-Ramos, Ronny Xavier VelasteguíFuentes:scopusHigh precision FPGA implementation of neural network activation functions
Conference ObjectAbstract: The efficient implementation of artificial neural networks in FPGA boards requires tackling severalPalabras claves:Autores:Francisco Ortega-Zamorano, Franco L., Jerez-Aragonés J.M., Juárez G.E., Perez J.O.Fuentes:scopusPiecewise Polynomial Activation Functions for Feedforward Neural Networks
ArticleAbstract: Since the origins of artificial neural network research, many models of feedforward networks have bePalabras claves:Activation functions, classification, Feedforward neural networks, regression, Supervised learningAutores:Domínguez E., Francisco Ortega-Zamorano, López-Rubio E., Muñoz-Pérez J.Fuentes:scopus