Mostrando 10 resultados de: 10
Subtipo de publicación
Article(10)
Publisher
Nonlinear Analysis, Theory, Methods and Applications(2)
Annals of Functional Analysis(1)
Banach Journal of Mathematical Analysis(1)
Bionatura(1)
Birkhauser(1)
Área temáticas
Análisis(3)
Física(3)
Electricidad y electrónica(1)
Medicina forense; incidencia de enfermedades(1)
Medicina y salud(1)
Área de conocimiento
Optimización matemática(6)
Mecánica cuántica(2)
Epidemiología(1)
Modelo matemático(1)
Sistema no lineal(1)
Objetivos de Desarrollo Sostenible
ODS 9: Industria, innovación e infraestructura(6)
ODS 17: Alianzas para lograr los objetivos(5)
ODS 4: Educación de calidad(4)
ODS 3: Salud y bienestar(2)
ODS 7: Energía asequible y no contaminante(2)
Origen
scopus(10)
A model for the SARS-CoV-2 dynamics in a population lacking herd immunity
ArticleAbstract: We introduced the S-HI model, a generalized SEIR model to describe the dynamics of the SARS-CoV-2 viPalabras claves:Basic reproduction number, data-driven networks, lack of herd immunity, mathematical models, SARS-COV-2, SEIR, SimulationsAutores:Juan Mayorga-Zambrano, Paúl Medina-Vásquez, Romero-Romero R.Fuentes:scopusCompact embeddings of p-Sobolev-like cones of nuclear operators
ArticleAbstract: Let p≥ 2 , Ω ⊆ RN smooth bounded domain, V∈ L ∞(Ω) non-negative, and S1 the space of self-adjoint trPalabras claves:Compact embedding, Free-energy functional, Gagliardo–Nirenberg type inequality, Nuclear operator, Regularity properties, Sobolev-like cones, Trace-class operatorAutores:Josué Castillo-Jaramillo, Juan Burbano-Gallegos, Juan Mayorga-ZambranoFuentes:scopusCompactness properties for trace-class operators and applications to quantum mechanics
ArticleAbstract: Interpolation inequalities of Gagliardo-Nirenberg type and compactness results for self-adjoint tracPalabras claves:Compact self-adjoint operators, Gagliardo-Nirenberg inequality, Lieb-Thirring inequality, Logarithmic Sobolev inequality, Mixed states, Occupation numbers, Optimal constants, Orthonormal and sub-orthonormal systems, Trace-class operatorsAutores:Dolbeault J., Felmer P., Juan Mayorga-ZambranoFuentes:scopusSobolev-like cones of trace-class operators on unbounded domains: Interpolation inequalities and compactness properties
ArticleAbstract: In this paper we extend the compactness properties for trace-class operators obtained by Dolbeault,Palabras claves:compactness, Free energy, Schrödinger operator, Trace-class operatorAutores:Juan Mayorga-Zambrano, Zuly SalinasFuentes:scopusMultiplicity and concentration for the nonlinear Schrödinger equation with critical frequency
ArticleAbstract: We consider the nonlinear Schrödinger equation (E)ε2 Δ v - V (x) v + | v |p - 1 v = 0 in RN, and thePalabras claves:Autores:Felmer P., Juan Mayorga-ZambranoFuentes:scopusMultiplicity of solutions for a p-Schrödinger–Kirchhoff-type integro-differential equation
ArticleAbstract: We consider the integro-differential problem (P): -(a+b(∫RN|∇u|pdx)p-1)Δpu+V(x)|u|p-2u=f(x,u),x∈RN,wPalabras claves:Critical point theory, Ljusternik–Schnirelman theory, p-Schrödinger–Kirchhoff-type equationAutores:Abraham Macancela-Bojorque, Josué Murillo-Tobar, Juan Mayorga-ZambranoFuentes:scopusSEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY
ArticleAbstract: We consider a nonlinear Schrödinger equation with critical frequency, (Pɛ): ɛ2∆v(x)-V(x)v(x) + |v(x)Palabras claves:Critical frequency, Infinite case, Nonlinear Schrödinger equation, Semiclassical asymptoticsAutores:Ariel Aguas-Barreno, Jordy Cevallos-Chavez, Juan Mayorga-Zambrano, Leonardo Medina-EspinosaFuentes:scopusAsymptotic Behaviour of Infinitely Many Solutions for the Finite Case of a Nonlinear Schrödinger Equation with Critical Frequency
ArticleAbstract:Palabras claves:Autores:Juan Mayorga-ZambranoFuentes:scopusA non-trivial solution for a p-Schrödinger–Kirchhoff-type integro-differential system by non-smooth techniques
ArticleAbstract:Palabras claves:Autores:Juan Mayorga-ZambranoFuentes:scopusExistence and Asymptotic of Solutions for a p-Laplace Schrödinger Equation with Critical Frequency
ArticleAbstract:Palabras claves:Autores:Juan Mayorga-ZambranoFuentes:scopus