Mostrando 10 resultados de: 16
Filtros aplicados
Subtipo de publicación
Other(16)
Área temáticas
Métodos informáticos especiales(6)
Ciencias de la computación(5)
Geometría(3)
Análisis(2)
Física aplicada(2)
Área de conocimiento
Ciencias de la computación(7)
Simulación por computadora(5)
Optimización matemática(3)
Visión por computadora(3)
Análisis numérico(2)
Objetivos de Desarrollo Sostenible
ODS 4: Educación de calidad(15)
ODS 9: Industria, innovación e infraestructura(15)
ODS 17: Alianzas para lograr los objetivos(14)
ODS 8: Trabajo decente y crecimiento económico(1)
Año de Publicación
2012(16)
Origen
google(16)
3D surface registration via iterative closest point (ICP)
OtherAbstract: The central theme of this chapter is surface registration, i.e. how to compute the correspondence bePalabras claves:Autores:François AntonFuentes:googleConvex Hulls
OtherAbstract: An object is convex if any two points inside it can be connected via a straight line that is entirelPalabras claves:Autores:François AntonFuentes:googleCurvature in triangle meshes
OtherAbstract: In many cases notions from differential geometry can be usefully extended to piecewise planar surfacPalabras claves:Autores:François AntonFuentes:googleFinite Difference Methods for Partial Differential Equations
OtherAbstract: In this chapter, we initially give an introduction to methods for computing derivatives and partialPalabras claves:Autores:François AntonFuentes:googleIsosurface polygonization
OtherAbstract: In the final chapter, we cover how to go from an implicit representation back to a triangle mesh. SiPalabras claves:Autores:François AntonFuentes:googleMesh Smoothing and Variational Subdivision
OtherAbstract: In this chapter, we cover how meshes are smoothed. This is an important topic in geometry processingPalabras claves:Autores:François AntonFuentes:googlePolygonal Meshes
OtherAbstract: The polygonal mesh representation is one of the most general and most used representations of geometPalabras claves:Autores:François AntonFuentes:googleParametrization of Meshes
OtherAbstract: Many algorithms rely on mesh parametrization. In particular, the mapping from a mesh to a 2D domainPalabras claves:Autores:François AntonFuentes:googleSimplifying and Optimizing Triangle Meshes
OtherAbstract: Smoothing is only one of the processes we generally have to apply to acquired geometry. This chapterPalabras claves:Autores:François AntonFuentes:googleSpatial Data Indexing and Point Location
OtherAbstract: This chapter is concerned with spatial databases. Anyone designing algorithms for geometry processinPalabras claves:Autores:François AntonFuentes:google