Mostrando 10 resultados de: 36
Filtros aplicados
Publisher
Remote Sensing(3)
AMS(1)
Atmosphere(1)
Authorea(1)
Bulletin of the American Meteorological Society(1)
Área temáticas
Geología, hidrología, meteorología(22)
Ingeniería sanitaria(8)
Ciencias de la computación(6)
Física aplicada(3)
Métodos informáticos especiales(3)
Área de conocimiento
Hidrología(22)
Hidráulica(13)
Aprendizaje automático(10)
Ciencia ambiental(6)
Clima(5)
A novel classification rainfall type using a clustering approach in the tropical Andes.
OtherAbstract: Information on the vertical profile of rainfall is important to improve our knowledge about microphyPalabras claves:Autores:Johanna Orellana-Alvear, Rolando Enrique Célleri AlvearFuentes:googleCharacterization of Extreme Rainfall Events Classes in the Tropical Andes by Using Weather Radar Data
OtherAbstract: Extreme rainfall is characterized by a high spatio-temporal variability. This variability is exacerbPalabras claves:Autores:Johanna Orellana-Alvear, Rolando Enrique Célleri AlvearFuentes:googleClassification of Extreme Rainfall Events in the Tropical Andes Using Weather Radar Observations
OtherAbstract:Palabras claves:Autores:Johanna Orellana-Alvear, Rolando Enrique Célleri AlvearFuentes:googleClustering of rainfall types using micro rain radar and laser disdrometer observations in the tropical andes
ArticleAbstract: Lack of rainfall information at high temporal resolution in areas with a complex topography as the TPalabras claves:K-Means, Laser disdrometer, Micro rain radar, Rainfall characteristics, Rainfall types, Tropical AndesAutores:Bendix J., Gabriela Urgilés, Johanna Orellana-Alvear, Rolando Enrique Célleri Alvear, Trachte K.Fuentes:scopusComparison of Machine Learning Techniques Powering Flood Early Warning Systems
OtherAbstract: Hydrological extremes (especially floods) have multiple impacts on society. Flood frequency and sevePalabras claves:Autores:Johanna Orellana-Alvear, Rolando Enrique Célleri AlvearFuentes:googleComparison of Machine Learning Techniques Powering Flood Early Warning Systems. Application to a catchment located in the Tropical Andes of Ecuador.
OtherAbstract: Flood Early Warning Systems have globally become an effective tool to mitigate the adverse effects oPalabras claves:Autores:Johanna Orellana-Alvear, Rolando Enrique Célleri AlvearFuentes:googleAssessment of native radar reflectivity and radar rainfall estimates for discharge forecasting in mountain catchments with a random forest model
ArticleAbstract: Discharge forecasting is a key component for early warning systems and extremely useful for decisionPalabras claves:Andes, Discharge forecasting, Machine learning, Mountain region, Native radar data, Radar rainfall, Radar reflectivity, X-bandAutores:Bendix J., Contreras P., Johanna Orellana-Alvear, Paul Muñoz, Rolando Enrique Célleri Alvear, Rollenbeck R.Fuentes:googlescopusAssessment of the relation between the NAM rainfall-runoff model parameters and the physical catchment properties
OtherAbstract: The NAM module of the MIKE-11 code was applied to four Belgian Catchments with the intention of findPalabras claves:Autores:Rolando Enrique Célleri AlvearFuentes:googleAn objective separation of rainfall classes in the high tropical Andes by using a clustering analysis.
OtherAbstract: Information about the temporal rainfall variability at high-resolution is scarce, especially in regiPalabras claves:Autores:Johanna Orellana-Alvear, Rolando Enrique Célleri AlvearFuentes:googleCaracterización de la precipitación espacial en las cuencas hidrográficas de los ríos Tomebamba y Yanuncay
Bachelor ThesisAbstract: El conocimiento de las variables ambientales resulta importante debido a su influencia en las activiPalabras claves:INGENIERIA AMBIENTAL, PRECIPITACION, Radar Meteorologico, Río Tomebamba, Rio YanuncayAutores:Johanna Marlene Orellana Alvear, Lisseth Cristina Vélez Brito, Rolando Enrique Célleri AlvearFuentes:rraae