Mostrando 10 resultados de: 21
Subtipo de publicación
Article(21)
Publisher
Applied Mathematics and Information Sciences(10)
Symmetry(4)
Axioms(2)
AIMS Mathematics(1)
Annals of the University of Craiova, Mathematics and Computer Science Series(1)
Área temáticas
Análisis(9)
Probabilidades y matemática aplicada(7)
Álgebra(7)
Principios generales de matemáticas(4)
Matemáticas(3)
Hermite-hadamard type mean square integral inequalities for stochastic processes whose twice mean square derivative are generalized η-convex.
ArticleAbstract: In the present work, a new concept of generalized convexity (i.e. generalized η-convexity) is establPalabras claves:Generalized η-convex stochastic processes, Hermite-hadamard inequality, Mean square integral inequalitiesAutores:García C., Hernández J.E.H., Kashuri A., Miguel Vivas-CortezFuentes:googlescopusOn (h<inf>1</inf>,h<inf>2</inf>,m)-GA-convex stochastic processes
ArticleAbstract: In this paper we propose the (h1;h2;m)-GA-Convexity for stochastic processes and give some new generPalabras claves:(h ,h )-convexity 1 2, GA-convexity, Hermite-hadamard inequality, Jensen inequality, Stochastic processesAutores:Hernández J.E.H., Miguel V., Miguel Vivas-CortezFuentes:scopusOn (m, h<inf>1</inf>,h<inf>2</inf>)-Convex stochastic processes using fractional integral operator
ArticleAbstract: We consider and study a new class of convex stochastic processes, called (m, h1,h2)-convex stochastiPalabras claves:(m, h ,h )-convex stochastic processes 1 2, Ostrowski inequalityAutores:Hernández J.E.H., Miguel Vivas-CortezFuentes:scopusOn a Hardy's inequality for a fractional integral operator
ArticleAbstract: In the present work we find inequalities that generalize some results found by Iqbal in [4, 5] regarPalabras claves:Fractional integral operator, Hardy's inequalityAutores:Hernández J.E.H., Miguel Vivas-CortezFuentes:googlescopusOn relative m-semi logarithmically convexity functions
ArticleAbstract: We consider and study a new class of convex functions that are called relative m-semilogarithmic conPalabras claves:Hermite-Hadamard inequalities, Relative m-semilogarithmic convex functionsAutores:Hernández J.E.H., Miguel Vivas-CortezFuentes:googlescopusOn some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities
ArticleAbstract: In this work, we introduce generalized Raina fractional integral operators and derive Chebyshev-typePalabras claves:Approximation techniques, Chebyshev inequality, Fractional-order integrals, Generalized Raina integral operators, Integral inequalitiesAutores:Hamed Y.S., Hernández J.E.H., Kashuri A., Macías-Díaz J.E., Miguel Vivas-Cortez, Mohammed P.O.Fuentes:googlescopusOn some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator h- convex functions.
ArticleAbstract: In the present paper we introduce the notion of operator h-convex function . Also, we obtain new JenPalabras claves:Hermite-Hadamard-Fejér inequalities, Operator convex functions, Operator h- convex functions, Self-adjoint operatorsAutores:Hernández J.E.H., Miguel Vivas-CortezFuentes:googlescopusOn φ–Convex Stochastic Processes and Integral Inequalities Related
ArticleAbstract: In this paper the concept of ϕ–convex stochastic process is introduced and certain algebraic propertPalabras claves:Mean square integral inequalities, Stochastic processes, ϕ–convexityAutores:Hernández J.E.H., Kashuri A., Miguel Vivas-CortezFuentes:googlescopusOstrowski and Jensen-type inequalities via (s, m)-convex functions in the second sense: Ostrowski and Jensen-type inequalities and generalized convexity
ArticleAbstract: In this work, a generalization of the classical Ostrowski inequality is obtained for functions, whosPalabras claves:(s, m)-convex function, Convex function, Jensen integral inequality, Ostrowski inequalityAutores:Hernández J.E.H., Miguel Vivas-CortezFuentes:googlescopusSome inequalities using generalized convex functions in quantum analysis
ArticleAbstract: In the present work, the Hermite-Hadamard inequality is established in the setting of quantum calculPalabras claves:(m, h , h )-convex functions 1 2, Dominated convexity, Integral inequalities, Quantum calculusAutores:Hernández J.E.H., Kashuri A., Liko R., Miguel Vivas-CortezFuentes:googlescopus