Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Article(4)
Área temáticas
Biología(1)
Ciencias de la computación(1)
Química analítica(1)
Química física(1)
Química orgánica(1)
Área de conocimiento
Aprendizaje automático(2)
Bioquímica(1)
Biotecnología(1)
Ingeniería química(1)
Microbiología(1)
Objetivos de Desarrollo Sostenible
ODS 9: Industria, innovación e infraestructura(4)
ODS 12: Producción y consumo responsables(2)
ODS 17: Alianzas para lograr los objetivos(1)
ODS 2: Hambre cero(1)
Origen
scopus(4)
Do deep learning models make a difference in the identification of antimicrobial peptides?
ArticleAbstract: In the last few decades, antimicrobial peptides (AMPs) have been explored as an alternative to classPalabras claves:Autores:Brizuela C.A., César R. García-Jacas, García-González L.A., Pinacho-Castellanos S.A.Fuentes:scopusGOWAWA Aggregation Operator-based Global Molecular Characterizations: Weighting Atom/bond Contributions (LOVIs/LOEIs) According to their Influence in the Molecular Encoding
ArticleAbstract: A different perspective to compute global weighted definitions of molecular descriptors from the conPalabras claves:3D molecular descriptors, Aggregation operators, data fusion, LOEIs, LOVIs, OWA aggregation operator, OWAWA aggregation operator, QuBiLS-MIDAS, WA aggregation operatorAutores:César R. García-Jacas, Cortés-Guzmán F., García-González L.A., José Suárez-Lezcano, Lisset Cabrera-Leyva, Yovani Marrero-PonceFuentes:scopusHandcrafted versus non-handcrafted (self-supervised) features for the classification of antimicrobial peptides: Complementary or redundant?
ArticleAbstract: Antimicrobial peptides (AMPs) have received a great deal of attention given their potential to becomPalabras claves:Antimicrobial peptides, deep learning, Explainable artificial intelligence, handcrafted features, Non-handcrafted features, self-supervision, shallow learningAutores:Brizuela C.A., César R. García-Jacas, García-González L.A., Martinez-Rios F.O., Tapia-Contreras I.P.Fuentes:scopusEnhancing Acute Oral Toxicity Predictions by using Consensus Modeling and Algebraic Form-Based 0D-to-2D Molecular Encodes
ArticleAbstract: Quantitative structure-activity relationships (QSAR) are introduced to predict acute oral toxicity (Palabras claves:Autores:César R. García-Jacas, Cortés-Guzmán F., García-González L.A., José Suárez-Lezcano, Martinez-Mayorga K., Martinez-Rios F.O., Pupo-Meriño M., Yovani Marrero-PonceFuentes:scopus