Mostrando 5 resultados de: 5
Filtros aplicados
Publisher
16th European Conference on Composite Materials, ECCM 2014(1)
International Journal of Fatigue(1)
Inverse Problems in Science and Engineering(1)
SIAM Journal on Scientific Computing(1)
Structural Safety(1)
Área temáticas
Ingeniería y operaciones afines(3)
Análisis numérico(1)
Ciencias de la computación(1)
Física(1)
Programación informática, programas, datos, seguridad(1)
Origen
scopus(5)
Bayesian model selection and parameter estimation for fatigue damage progression models in composites
ArticleAbstract: A Bayesian approach is presented for selecting the most probable model class among a set of damage mPalabras claves:Bayesian methods, COMPOSITES, Damage mechanics, fatigueAutores:Goebel K., Juan Chiachío, Ruano M.C., Rus G., Sankararaman S., Saxena A.Fuentes:scopusAn efficient algorithm to pbkp_redict the expected end-of-life in composites under fatigue conditions
Conference ObjectAbstract: This work presents an efficient computational framework for estimating the end of life (EOL) and remPalabras claves:fatigue damage, Model-based prognostics, Particle filters, Structural health managementAutores:Goebel K., Juan Chiachío, Ruano M.C., Rus G., Saxena A.Fuentes:scopusApproximate bayesian computation by subset simulation
ArticleAbstract: A new approximate Bayesian computation (ABC) algorithm for Bayesian updating of model parameters isPalabras claves:Approximate Bayesian Computation, Bayesian inverse problem, Subset simulationAutores:Beck J.L., Juan Chiachío, Ruano M.C., Rus G.Fuentes:scopusLogical inference for inverse problems
ArticleAbstract: Estimating a deterministic single value for model parameters when reconstructing the system responsePalabras claves:Bayesian updating, INFERENCE, Inverse Problem, model class selection, probability logic, stochastic inverse problemAutores:Juan Chiachío, Ruano M.C., Rus G.Fuentes:scopusPbkp_redicting fatigue damage in composites: A Bayesian framework
ArticleAbstract: Modeling the progression of damage in composites materials is a challenge mainly due to the uncertaiPalabras claves:Bayesian inverse problem, fatigue, FRP composites, Markov chains, model class selectionAutores:Beck J.L., Juan Chiachío, Ruano M.C., Rus G.Fuentes:scopus