Mostrando 8 resultados de: 8
Filtros aplicados
Publisher
Computing in Cardiology(4)
IFMBE Proceedings(1)
International Journal of Environmental Research and Public Health(1)
Journal of Biomedical Informatics(1)
Proceedings - 2020 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2020(1)
Área temáticas
Medicina y salud(5)
Ciencias de la computación(2)
Fisiología humana(2)
Anatomía humana, citología, histología(1)
Análisis numérico(1)
Área de conocimiento
Enfermedad cardiovascular(3)
Aprendizaje automático(2)
Cirugía(2)
Algoritmo(1)
Ciencias de la computación(1)
Objetivos de Desarrollo Sostenible
ODS 3: Salud y bienestar(8)
ODS 9: Industria, innovación e infraestructura(7)
ODS 17: Alianzas para lograr los objetivos(4)
ODS 10: Reducción de las desigualdades(3)
ODS 12: Producción y consumo responsables(1)
Origen
scopus(8)
Autocorrelation kernel support vector machines for Doppler ultrasound M-mode images denoising
Conference ObjectAbstract: Doppler ultrasound M-mode images are routinely used in clinical echocardiography, and they have beenPalabras claves:Autores:Bermejo J., Carlos Antoranz J., Guerrero-Curieses A., Jose Luis Rojo-Álvarez, Palancar F.J., Soguero-Ruiz C.Fuentes:scopusAn interoperable system toward cardiac risk stratification from ECG monitoring
ArticleAbstract: Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signalPalabras claves:ARCHETYPES, Cardiovascular risk stratification, Electronic health records, Heart rate turbulence, Heart Rate Variability, Semantic Interoperability, web systemAutores:Díez-Mazuela D., Fernández T.Q., GarcÍa-Alberola A., García-García A., Jose Luis Rojo-Álvarez, Mora-Jimnez I., Ramos-López J., Soguero-Ruiz C.Fuentes:scopusFinding Associations among Chronic Conditions by Bootstrap and Multiple Correspondence Analysis
Conference ObjectAbstract: Contemporary societies are suffering from negative population growth, with the consequent populationPalabras claves:bootstrap resampling, Chronic conditions, CORRESPONDENCE ANALYSIS, feature selectionAutores:Alonso-Arteaga N., Jose Luis Rojo-Álvarez, Lopez-Fajardo I.C., Mora-Jimnez I., Muoz-Romero S., Rubio-Sánchez M., Soguero-Ruiz C.Fuentes:scopusSpectral and nonlinear analysis of surgical ventricular fibrillation
Conference ObjectAbstract: Most studies about ventricular fibrillation (VF) in humans have attempted to analyze the first minutPalabras claves:Autores:Barquero-Perez O., GarcÍa-Alberola A., Jose Luis Rojo-Álvarez, Pulido-Hidalgo F., Sánchez-Muñoz J.J., Soguero-Ruiz C.Fuentes:scopusNonlinear characteristics of ventricular fibrillation depend on myocardial infarction locations
Conference ObjectAbstract: The location of the myocardial infarction (MI) might induce a change in the characteristics of cardiPalabras claves:Autores:Barquero-Perez O., GarcÍa-Alberola A., Gonzalez-Gonzalez M., Jose Luis Rojo-Álvarez, Sánchez-Muñoz J.J., Soguero-Ruiz C.Fuentes:scopusTowards semantic interoperability for cardiovascular risk stratification into the electronic health records using archetypes and SNOMED-CT
Conference ObjectAbstract: Clinical data exchange among different organizations can be of great value in the field of CardiovasPalabras claves:Autores:GarcÍa-Alberola A., Jose Luis Rojo-Álvarez, Lechuga L., Mora-Jimnez I., Ramos-Lpez J., Sánchez-Caro A., Serrano-Balazote P., Soguero-Ruiz C.Fuentes:scopusPredicting colorectal surgical complications using heterogeneous clinical data and kernel methods
ArticleAbstract: Objective: In this work, we have developed a learning system capable of exploiting information convePalabras claves:clinical decision support, Colorectal cancer, Electronic health records, feature selection, Heterogeneous clinical data, kernel methodsAutores:Augestad K.M., Godtliebsen F., Hindberg K., Jenssen R., Jose Luis Rojo-Álvarez, Lindsetmo R.O., Mora-Jimnez I., Mortensen K., Revhaug A., Skrøvseth S., Soguero-Ruiz C.Fuentes:scopusPrediction of healthcare associated infections in an intensive care unit using machine learning and big data tools
Conference ObjectAbstract: Healthcare associated infections (HAIS) can be acquired by patients during their stay in a hospital.Palabras claves:BIG DATA, Healthcare Associated Infections, Intensive Unit Care, Machine learning, RISK FACTORSAutores:Álvarez-Rodríguez J., Jose Luis Rojo-Álvarez, Ramos-Lpez J., Revuelta-Zamorano P., Sanchez A., Soguero-Ruiz C.Fuentes:scopus