Crime pbkp_rediction for patrol routes generation using machine learning


Abstract:

Citizen security is one of the main objectives of any government worldwide. Security entities make multiple efforts to apply the latest technologies in order to prevent any type of criminal offence. The analysis of a database of the National Police of Ecuador has allowed us generating patrol routes to prevent and reduce the crime rate in the city of Quito, Ecuador. The K-means clustering has been used to determine the points of greatest crime concentration and then linear regression is applied for the pbkp_rediction of crimes within subgroups of data. Those way-points will allow to generate and optimize police patrol routes. The results obtained in the pbkp_rediction of crimes is greater than 80%.

Año de publicación:

2021

Keywords:

  • Patrolling
  • citizen security
  • k-means clustering
  • crime pbkp_rediction
  • Machine learning

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Otros problemas y servicios sociales
  • Programación informática, programas, datos, seguridad
  • Física aplicada

Contribuidores: