Cubic overestimation and secant updating for unconstrained optimization of C <sup>2, 1</sup> functions
Abstract:
The discrepancy between an objective function f and its local quadratic model f(x)+ f(x) s+s H(x) s/2 ≈ f(x+s) at the current iterate x is estimated using a cubic term q |s|3/3. Potential steps are chosen such that they minimize (or at least significantly reduce) the overestimating function f(x) s+s B s/2+q |s|3/3 with B ≈ H(x). This ensures f(x+s)<f(x) unless the approximating Hessian B=B differs significantly from H(x) or the scalar q>0 is too small. Either one or both quantities may be updated after unsuccessful and successful steps alike. For an algorithm employing both the symmetric rank one update and a shifted version of the BFGS formula we show that eitherf | f|=0 or sup |B|=∞, provided the Hessian H(x) is Lipschitz on some neighbourhood of a bounded level set. Superlinear convergence is theoretically expected and numerically observed but not yet proven. © 2014 Taylor and Francis.
Año de publicación:
2014
Keywords:
- eigenvalue decomposition
- cubic overestimation
- Quasi-Newton
- unconstrained optimization
- compromise update
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis
- Análisis numérico
- Probabilidades y matemática aplicada