Cyano-Functionalized Porphyrins on Cu(111) from One-Dimensional Wires to Two-Dimensional Molecular Frameworks: On the Role of Co-Deposited Metal Atoms
Abstract:
Metal adatoms play a key role in surface diffusion, adsorption conformation, and self-assembly of porphyrin molecules on metal surfaces. Herein, we study the specific influence of coadsorption of Fe, Co, and Pd atoms on the behavior of 2H-tetrakis(p-cyano)phenylporphyrin (2H-TCNPP) on Cu(111) using scanning tunneling microscopy. Upon co-deposition of Fe and Co, the molecules form one-dimensional (1D) linear chains after mild annealing on Cu(111) driven by the interaction of its cyano groups with metal adatoms. A similar behavior has been observed previously on Cu(111), mediated by Cu adatoms, where the functional CN groups were also found to lower the reaction rate of the so-called porphyrin self-metalation reaction with Cu atoms significantly, in comparison to the non-cyano-functionalized porphyrin. Upon co-deposition of Pd and mild annealing, we find a remarkably different behavior, that is, a massive reorganization from 1D molecular chains to a peculiar rectangular 2D (two-dimensional) network. The molecular appearance changes to a clover shape, which is attributed to a Pd-induced dehydrogenation and subsequent ring closure reaction of the phenyl and pyrrole groups.
Año de publicación:
2020
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencia de materiales
- Ciencia de materiales
Áreas temáticas:
- Química orgánica
- Química inorgánica