Cyano-Functionalized Triarylamines on Au(111): Competing Intermolecular versus Molecule/Substrate Interactions


Abstract:

The self-assembly of cyano-substituted triarylamine derivatives on Au(111) is studied with scanning tunneling microscopy and density functional theory calculations. Two different phases, each stabilized by at least two different cyano bonding motifs are observed. In the first phase, each molecule is involved in dipolar coupling and hydrogen bonding, while in the second phase, dipolar coupling, hydrogen bonding and metal-ligand interactions are present. Interestingly, the metal-ligand bond is already observed for deposition of the molecules with the sample kept at room temperature leaving the herringbone reconstruction unaffected. It is proposed that for establishing this bond, the Au atoms are slightly displaced out of the surface to bind to the cyano ligands. Despite the intact herringbone reconstruction, the Au substrate is found to considerably interact with the cyano ligands affecting the conformation and adsorption geometry, as well as leading to correlation effects on the molecular orientation.

Año de publicación:

2014

Keywords:

  • dipolar coupling
  • cyano functional group
  • Scanning tunneling microscopy
  • triarylamines
  • self-assembly

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales

Áreas temáticas:

  • Química física
  • Química orgánica