AVATAR: An advanced multi-agent recommender system of personalized TV contents by semantic reasoning


Abstract:

In this paper a recommender system of personalized TV contents, named AVATAR1, is presented. We propose a modular multi-agent architecture for the system, whose main novelty is the semantic reasoning about user preferences and historical logs, to improve the traditional syntactic content search. Our approach uses Semantic Web technologies - more specifically an OWL ontology -and the TV-Anytime standard to describe the TV contents. To reason about the ontology, we have defined a query language, named LIKO, for inferring knowledge from properties contained in it. In addition, we show an example of a semantic recommendation by means of some LIKO operators. © Springer-Verlag 2004.

Año de publicación:

2004

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Inteligencia artificial
    • Ciencias de la computación

    Áreas temáticas:

    • Métodos informáticos especiales
    • Funcionamiento de bibliotecas y archivos
    • Publicidad y relaciones públicas