Damage Detection on Offshore Wind Turbine Jacket Foundations Based on an AutoEncoder


Abstract:

This work addresses the problem of damage detection on offshore wind turbine jacket-type foundations based on deep learning algorithms. The work utilizes data obtained from the vibration response of a lab-scale wind turbine foundation. The main contributions of this manuscript to damage detection are: (i) an autoencoder neural network trained with only healthy data drawing a normality model, and (ii) a threshold in the function of pbkp_rediction errors to define the bound limits of damage. The methodology is evaluated using real vibration data from the lab-scale wind turbine foundation tagged with different noise levels and damage scenarios. The results of damage detection show a 100% accuracy, demonstrating that the proposed methodology is practical and promising to be employed in this kind of challenges.

Año de publicación:

2021

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ingeniería mecánica
    • Aprendizaje automático

    Áreas temáticas:

    • Física aplicada