Data analysis using Riemannian geometry and applications to chemical engineering


Abstract:

We explore the use of tools from Riemannian geometry for the analysis of symmetric positive definite matrices (SPD). An SPD matrix is a versatile data representation that is commonly used in chemical engineering (e.g., covariance/correlation/Hessian matrices and images) and powerful techniques are available for its analysis (e.g., principal component analysis). A key observation that motivates this work is that SPD matrices live on a Riemannian manifold and that implementing techniques that exploit this basic property can yield significant benefits in data-centric tasks such as classification and dimensionality reduction. We demonstrate this via a couple of case studies that conduct anomaly detection in the context of process monitoring and image analysis.

Año de publicación:

2022

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ingeniería química
    • Modelo matemático

    Áreas temáticas:

    • Análisis