Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach


Abstract:

This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.

Año de publicación:

2021

Keywords:

  • Image retrieval
  • Smooth-nDCG
  • Historical photographs
  • Date estimation
  • Ranking loss

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Museología
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos
  • Imprenta y actividades conexas