Decadal oscillation in the pbkp_redictability of Palmer Drought Severity Index in California
Abstract:
Severity of drought in California (U.S.) varies from year-to-year and is highly influenced by precipitation in winter months, causing billion-dollar events in single drought years. Improved understanding of the variability of drought on decadal and longer timescales is essential to support regional water resources planning and management. This paper presents a soft-computing approach to forecast the Palmer Drought Severity Index (PDSI) in California. A time-series of yearly data covering more than two centuries (1801-2014) was used for the design of ensemble projections to understand and quantify the uncertainty associated with interannual-to-interdecadal pbkp_redictability. With a pbkp_redictable structure elaborated by exponential smoothing, the projections indicate for the horizon 2015-2054 a weak increase of drought, followed by almost the same pace as in previous decades, presenting remarkable wavelike variations with durations of more than one year. Results were compared with a linear transfer function model approach where Pacific Decadal Oscillation and El Niño Southern Oscillation indices were both used as input time series. The forecasted pattern shows that variations attributed to such internal climate modes may not provide more reliable pbkp_redictions than the one provided by purely internal variability of drought persistence cycles, as present in the PDSI time series.
Año de publicación:
2019
Keywords:
- Exponential smoothing
- Ensemble forecast
- Transfer function modelling
- drought
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Clima
- Clima
Áreas temáticas:
- Geología, hidrología, meteorología