Deep Learning-Based Gear Pitting Severity Assessment Using Acoustic Emission, Vibration and Currents Signals
Abstract:
A method for gearbox pitting faults severity classification using Deep Learning techniques is reported. The signals are preprocessed for obtaining a 2D time-frequency representation corresponding to the Mel Frequency Cepstral Coefficients. This bi-dimensional representation is the feature space used for classification. A Long Short Term Memory network (LSTM) is used for classifying nine levels of pitting in spur gears. Each signals dataset is used for training and validating a LSTM network. Classification accuracies up to 100 % are obtained during cross-validation with the analyzed signals dataset.
Año de publicación:
2019
Keywords:
- Long short term memory networks
- Acoustic Emission
- deep learning
- gearbox
- Faults detection
Fuente:
![scopus](/_next/image?url=%2Fscopus.png&w=128&q=75)
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ingeniería mecánica
- Aprendizaje automático
Áreas temáticas:
- Física aplicada
- Métodos informáticos especiales