Deep Learning-Based Gear Pitting Severity Assessment Using Acoustic Emission, Vibration and Currents Signals


Abstract:

A method for gearbox pitting faults severity classification using Deep Learning techniques is reported. The signals are preprocessed for obtaining a 2D time-frequency representation corresponding to the Mel Frequency Cepstral Coefficients. This bi-dimensional representation is the feature space used for classification. A Long Short Term Memory network (LSTM) is used for classifying nine levels of pitting in spur gears. Each signals dataset is used for training and validating a LSTM network. Classification accuracies up to 100 % are obtained during cross-validation with the analyzed signals dataset.

Año de publicación:

2019

Keywords:

  • Long short term memory networks
  • Acoustic Emission
  • deep learning
  • gearbox
  • Faults detection

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ingeniería mecánica
  • Aprendizaje automático

Áreas temáticas:

  • Física aplicada
  • Métodos informáticos especiales