Deep learning based single image dehazing
Abstract:
This paper proposes a novel approach to remove haze degradations in RGB images using a stacked conditional Generative Adversarial Network (GAN). It employs a triplet of GAN to remove the haze on each color channel independently. A multiple loss functions scheme, applied over a conditional probabilistic model, is proposed. The proposed GAN architecture learns to remove the haze, using as conditioned entrance, the images with haze from which the clear images will be obtained. Such formulation ensures a fast model training convergence and a homogeneous model generalization. Experiments showed that the proposed method generates high-quality clear images.
Año de publicación:
2018
Keywords:
Fuente:
scopus
googleTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
Áreas temáticas de Dewey:
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 11: Ciudades y comunidades sostenibles
- ODS 15: Vida de ecosistemas terrestres
- ODS 9: Industria, innovación e infraestructura