Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project


Abstract:

We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M2) plus two to five (BH4) - groups, i.e., M1 M2 (BH4) 2-5, using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were pbkp_redicted to form potentially stable alloys with promising decomposition energies. The M1 (Al/Mn/Fe) (BH4) 4, (Li/Na) Zn (BH4)3, and (Na/K) (Ni/Co) (BH4) 3 alloys are found to be the most promising, followed by selected M1 (Nb/Rh) (BH4) 4 alloys. © 2009 American Institute of Physics.

Año de publicación:

2009

Keywords:

    Fuente:

    googlegoogle
    scopusscopus