Density-dependent diffusion and refuge in a spatial Rosenzweig-MacArthur model: Stability results
Abstract:
In this note we present a study of the solutions associated to a particular spatial extension of the Rosenzweig-MacArthur model for predator and prey. The analysis presented here shows that positive steady state solutions emerge via a transcritical bifurcation mechanism, in accordance with the insight obtained from previous numerical and analytical results. In the model under discussion, prey is assumed to move avoiding crowds via a density-dependent diffusion and also incorporates the existence of a refuge zone, where predators cannot consume prey. Saturation in prey consumption is also included through a Holling type II functional response.
Año de publicación:
2022
Keywords:
- Refuge zone
- Transcritical bifurcation
- Rosenzweig-MacArthur model
- Holling type II functional response
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Modelo matemático
- Modelo matemático
Áreas temáticas:
- Ecología
- Microorganismos, hongos y algas