Desarrollo de un aplicativo móvil que optimice el diagnóstico de humedad en el Laurel mediante Aprendizaje Profundo en el aserradero "San Martín" ubicado en la parroquia de Pastocalle provincia de Cotopaxi
Abstract:
La presente investigación tiene como propósito el desarrollo de un aplicativo móvil que optimiza el diagnóstico de contenido de humedad en la madera del laurel para el aserradero "San Martín", mediante la implementación, prueba y comparación de 4 modelos de redes neuronales convolucionales (CNN). Mejorando la efectividad en el proceso de selección de materia prima de dicha madera. Realizándose una revisión sistemática, obteniéndose información de artículos científicos actuales, lo cual permite determinar la problemática a solucionar y su enfoque en posibles soluciones. Continuándose con el desarrollo y validación de un aplicativo móvil el mismo que está compuesto de 4 etapas: 1. Levantamiento de requisitos de software (estándar IEEE 830), 2. Diseño de arquitectura de software (monolítica), 3. Desarrollo del aplicativo móvil (metodología RAD), y 4. Pruebas y validación (encuesta SUS). Determinándose que el modelo de redes neuronales convolucionales (CNN) que presenta los mejores resultados en la clasificación y diagnóstico de contenido de humedad del laurel es la herramienta Google Teachable Machine obteniendo un 93.75% de efectividad. Además, cabe destacar que se obtiene un 84.25% del grado de usabilidad en el aplicativo móvil desarrollado, reflejando la calidad del mismo. Siendo una herramienta muy importante para los artesanos y expertos del aserradero.
Año de publicación:
2021
Keywords:
- SOFTWARE GOOGLE TEACHABLE MACHINE
- MADERA LAUREL
- Aprendizaje profundo
- Redes Neuronales
- VISIÓN POR COMPUTADORA
Fuente:
Tipo de documento:
Bachelor Thesis
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Software
- Ciencias Agrícolas
Áreas temáticas:
- Métodos informáticos especiales
- Ciencias de la computación
- Ingeniería y operaciones afines