Accurate Characterization of Mixed Plastic Waste Using Machine Learning and Fast Infrared Spectroscopy
Abstract:
We present a combination of convolutional neural network (CNN) framework and fast MIR (mid-infrared spectroscopy) for classifying different types of dark plastic materials that are commonly found in mixed plastic waste (MPW) streams. Dark plastic materials present challenges in fast identification because of the low signal-to-noise ratio. The proposed CNN architecture (which we call PlasticNet) can reach an overall classification accuracy of 100% and can identify the constituent materials in a multiplastic blend with 100% accuracy. The fast MIR system can collect spectral data at a rate up to 400 Hz, and the CNN model can reach pbkp_rediction speeds of 8200 Hz. Therefore, this method provides an avenue to be able to characterize MPW in a real-time high-throughput manner.
Año de publicación:
2021
Keywords:
- classification
- plastic waste
- IR spectra
- Machine learning
- real-time
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencia de materiales
- Aprendizaje automático
Áreas temáticas:
- Métodos informáticos especiales