Design of model-based controllers applied to a solid-state low voltage dc breaker


Abstract:

This paper presents the methodology of design of model-based sliding mode control (SMC) algorithms applied to power electronic dc-dc converters, which are part of the components of a solid-state low voltage dc breaker (SLVDB). The power converters used in the tested schemes of the SLVDB are the boost and sepic dc-dc converters. Accurate disconnection times, user-configured, are achieved with the proposed controllers, as well as a complete minimization of the transient recovery voltage (TRV) in the breaker terminals. Details of the performance of two SLVDB configurations are analyzed and compared in order to establish the best design comprising complexity vs. performance. MATLAB simulations support the results and provide a reasonable picture of the operation of the SLVDB.

Año de publicación:

2015

Keywords:

  • transient recovery voltage
  • Fault current
  • sliding mode control
  • dc breaker

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema de control

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería