Design of model-based controllers applied to a solid-state low voltage dc breaker
Abstract:
This paper presents the methodology of design of model-based sliding mode control (SMC) algorithms applied to power electronic dc-dc converters, which are part of the components of a solid-state low voltage dc breaker (SLVDB). The power converters used in the tested schemes of the SLVDB are the boost and sepic dc-dc converters. Accurate disconnection times, user-configured, are achieved with the proposed controllers, as well as a complete minimization of the transient recovery voltage (TRV) in the breaker terminals. Details of the performance of two SLVDB configurations are analyzed and compared in order to establish the best design comprising complexity vs. performance. MATLAB simulations support the results and provide a reasonable picture of the operation of the SLVDB.
Año de publicación:
2015
Keywords:
- transient recovery voltage
- Fault current
- sliding mode control
- dc breaker
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
Áreas temáticas:
- Física aplicada
- Otras ramas de la ingeniería