Detección de la intención de movimiento de extremidades inferiores usando métodos de aprendizaje supervisado


Abstract:

Este trabajo se enmarca dentro el proyecto Prototipo de exoesqueleto usable en las extremidades inferiores, mediante la utilización de algoritmos de control adaptativos. El objetivo fue desarrollar un algoritmo capaz de detectar la intención del movimiento partiendo de electromiogramas (EMG) de sujetos con patologías en los miembros inferiores utilizando redes neuronales artificiales (ANN, por sus siglas en inglés) con reconocimiento de patrones mediante el método Levenberg-Marquardt. Se contempló una etapa de pre-procesamiento del EMG (filtrado, rectificación y normalización) y la anotación de la intención del movimiento. El algoritmo fue entrenado y validado usando una base de datos EMG de sujetos normales. Se obtuvo un desempeño global de 90,96% para una evaluación punto a punto y 94,88% en una evaluación por eventos. Estos resultados fueron publicados en ETCM-IEEE2018. Se registró una base de datos de 6 pacientes (42.83 ± 10.51 años), contentiva de 78 señales EMG, correspondientes a 13 músculos. Con los parámetros de entrenamiento obtenidos en la primera base de datos, se determinó la intención de movimiento en los sujetos con patologías y adicionalmente los valores de relación señal a ruido (SNR) y de frecuencia media (MNF). Se obtuvo un desempeño global de 93,14% punto a punto y 91.19% por eventos, el tiempo de retardo fue de 31,06±18,89 ms, SNR de 17,28±1,67 dB y los valores de MNF hallados son menores a los reportados en la literatura, lo que sugiere menor torque en esta población. Estos resultados permiten contemplar la implementación del algoritmo en tiempo real para un exoesqueleto.

Año de publicación:

2019

Keywords:

  • SNR
  • Redes neuronales artificiales
  • EXOESQUELETO
  • EMG
  • MNF
  • Reconocimiento de Patrones

Fuente:

rraaerraae

Tipo de documento:

Bachelor Thesis

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación
  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos