Acquiring unobtrusive relevance feedback through eye-tracking in ambient recommender systems
Abstract:
Acquiring relevant information to keep user's preferences up-to-date is crucial in recommender systems in order to close the cycle of recommendations. Ambient Intelligence is a suitable approach for non-intrusively closing the loop in recommender systems using ambient eye-trackers. We combine a method for acquiring relevance feedback through eye-tracking with the functionalities of an extractor agent. We describe the results of experiments conducted in a recommender system to obtain implicit feedback using eye fixations. Finally, we obtain a ranking of user's most relevant preferences and behaviours. © 2005 The authors. All rights reserved.
Año de publicación:
2005
Keywords:
- Eye-tracking
- Ambient recommender systems
- User modelling
- Implicit relevance feedback
Fuente:
![scopus](/_next/image?url=%2Fscopus.png&w=128&q=75)
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos