Acquiring unobtrusive relevance feedback through eye-tracking in ambient recommender systems


Abstract:

Acquiring relevant information to keep user's preferences up-to-date is crucial in recommender systems in order to close the cycle of recommendations. Ambient Intelligence is a suitable approach for non-intrusively closing the loop in recommender systems using ambient eye-trackers. We combine a method for acquiring relevance feedback through eye-tracking with the functionalities of an extractor agent. We describe the results of experiments conducted in a recommender system to obtain implicit feedback using eye fixations. Finally, we obtain a ranking of user's most relevant preferences and behaviours. © 2005 The authors. All rights reserved.

Año de publicación:

2005

Keywords:

  • Eye-tracking
  • Ambient recommender systems
  • User modelling
  • Implicit relevance feedback

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos