Development of Machine Learning-based Predictive Models for Wireless Indoor Localization Application with Feature Ranking via Recursive Feature Elimination Algorithm
Abstract:
The cutting-edge wireless technologies offer huge array of services, from ultra-high-speed data communications to internet of things. But the current existing infrastructure cannot handle these use cases. Consequently, it is becoming a trend to apply computational intelligence algorithms such as machine learning (ML), deep learning (DL), reinforcement learning (RL) and artificial intelligence (AI) to wireless network infrastructures. And one of these applications is on wireless indoor localization. Wireless indoor localization takes advantage of wireless access points (WAPs) received signal strength indicators (RSSI) values to pinpoint the location of a user, similar to concept of GPS but indoors. The goal of this paper is to develop predictive models that can be used to predict the location of a user using RSSI readings that his smartphone receives. In this study, four ML algorithms are used which are support vector machines, random forest, Naïve-Bayes classifier and neural networks. The accuracy of each model are 97.83%, 97.67%, 98.50% and 97.33% respectively. Also, a recursive feature elimination algorithm is also used to determine the predictor that has the least impact amongst all other features and it is found out in the study that WAP2 is contributes the least influence when the predictive models are developed.
Año de publicación:
2020
Keywords:
- wireless indoor localization
- recursive feature elimination
- random forest
- neural network
- SVM
- Machine learning
- Naïve-Bayes
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Software
Áreas temáticas de Dewey:
- Métodos informáticos especiales
- Programación informática, programas, datos, seguridad
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico