Different capacities of various NMDA receptor antagonists to prevent ischemia-induced neurodegeneration in human cultured NT2 neurons


Abstract:

In the present study, human NT2 neurons obtained from embryonic teratocarcinoma (NT2) cells were established as human in-vitro model to investigate the mechanisms associated with hypoxia/ischemia-induced neuronal injury. NT2 neurons express functional NMDA receptors that are of particular significance for hypoxia/ischemia-related neuronal damage. In patch-clamp recordings under normoxic conditions, NMDA (plus 10 μM glycine)-induced inward currents (EC50 = 43.7 μM) were distinctly antagonized by memantine, a blocker of the receptor channel, but only slightly by 5,7-dichlorokynurenic acid (DCKA), a glycineB binding site antagonist. Immunohistochemistry demonstrated that the NT2 neurons are mostly GABAergic; they predominantly express the NMDA receptor subunits NR2B and NR2C, and lower levels of NR1 and, particularly, of NR2A. Upon glucose and oxygen deprivation for 3 h the loss of cell viability measured directly after 3 h was higher than after application of either hypoxia or aglycemia as assessed by propidium iodide flow cytometry. Ischemic conditions significantly reduced the NMDA responses associated with a decrease in EC50 and decreased mitochondrial membrane potential as detected by JC-1 flow cytometry. Memantine (50 μM) and CGS19755 (a competitive NMDA receptor antagonist; 10 μM) reduced ischemia-induced cell death, in contrast to DCKA (10 μM). In conclusion, in the present human in-vitro model for studying the molecular mechanisms associated with ischemic injury, neuroprotection could be achieved with NMDA receptor antagonists but not with a glycineB binding site antagonist. Accordingly, glycine antagonists might not represent an optimal therapeutic strategy for preventing ischemic neuronal damage in contrast to NMDA receptor antagonists like memantine. © 2006 Elsevier Ltd. All rights reserved.

Año de publicación:

2006

Keywords:

  • immunocytochemistry
  • Glycine binding site antagonists B
  • ischemia
  • Cultured human NT2 neurons
  • NMDA receptors
  • Patch-clamp recordings

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Neurología
  • Neuropsicología

Áreas temáticas:

  • Farmacología y terapéutica
  • Fisiología humana
  • Enfermedades