Dimensionality Reduction Using PCA and CUR Algorithm for Data on COVID-19 Tests


Abstract:

In this paper we present the results of two well known analyses, Principal Component Analysis and CUR algorithm, conducted on data related to tests of coronavirus, which were performed from May 17th to June 26th, 2020 in Ibarra, Ecuador. We analyzed the effectiveness of CUR over PCA and found out that, for our data matrix, CUR is more effective than PCA whenever the control parameters of the CUR algorithm c and k are equal. Furthermore, the results of CUR algorithm suggest that the laboratory tests D-dimer, ferritin and PCR are the most important variables.

Año de publicación:

2021

Keywords:

  • principal components analysis
  • covid-19
  • CUR algorithm

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos
  • Otros problemas y servicios sociales