Discerning the antioxidant mechanism of rapanone: A naturally occurring benzoquinone with iron complexing and radical scavenging activities
Abstract:
Oxidative stress resulting from iron and reactive oxygen species (ROS) homeostasis breakdown has been implicated in several diseases. Therefore, molecules capable of binding iron and/or scavenging ROS may be reasonable strategies for protecting cells. Rapanone is a naturally occurring hydroxyl-benzoquinone with a privileged chelating structure. In this work, we addressed the antioxidant properties of rapanone concerning its iron-chelating and scavenging activities, and its protective potential against iron and tert-butyl hydroperoxide-induced damage to mitochondria. Experimental determinations revealed the formation of rapanone-Fe(II)/Fe(III) complexes. Additionally, the electrochemical assays indicated that rapanone oxidized Fe(II) and O2−[rad], thus inhibiting Fenton-Haber-Weiss reactions. Furthermore, rapanone displayed an increased 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability in the presence of Fe(II). The above results explained the capacity of rapanone to provide near-full protection against iron and tert-butyl hydroperoxide induced mitochondrial lipid peroxidation in energized organelles, which fail under non-energized condition. We postulate that rapanone affords protection against iron and reactive oxygen species by means of both iron chelating and iron-stimulated free radical scavenging activity.
Año de publicación:
2017
Keywords:
- Mitochondria
- Iron
- Rapanone
- Quinones
- antioxidant
- Iron-chelation
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Bioquímica
- Bioquímica
- Bioquímica
Áreas temáticas:
- Farmacología y terapéutica