Discovering Useful Compact Sets of Sequential Rules in a Long Sequence


Abstract:

We are interested in understanding the underlying generation process for long sequences of symbolic events. To do so, we propose COSSU, an algorithm to mine small and meaningful sets of sequential rules. The rules are selected using an MDL-inspired criterion that favors compactness and relies on a novel rule-based encoding scheme for sequences. Our evaluation shows that COSSU can successfully retrieve relevant sets of closed sequential rules from a long sequence. Such rules constitute an interpretable model that exhibits competitive accuracy for the tasks of next-element pbkp_rediction and classification.

Año de publicación:

2021

Keywords:

  • sequential rules
  • MDL
  • long sequences
  • rule mining

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Minería de datos
  • Algoritmo
  • Ciencias de la computación

Áreas temáticas:

  • Programación informática, programas, datos, seguridad