Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes
Abstract:
Trebouxia sp. TR9 and Coccomyxa simplex are desiccation-tolerant microalgae with flexible cell walls, which undergo species-specific remodelling during dehydration–rehydration (D/R) due to their distinct ultrastructure and biochemical composition. Here, we tested the hypothesis that extracellular polysaccharides excreted by each microalga could be quantitatively and/or qualitatively modified by D/R. Extracellular polysaccharides were analysed by size exclusion and anion exchange chromatography, specific stains after gel electrophoresis and gas chromatography/mass spectrometry of trimethylsilyl derivatives (to determine their monosaccharide composition). The structure of a TR9-sulfated polymer was deduced from nuclear magnetic resonance (NMR) analyses. In addition, sugar-sulfotransferase encoding genes were identified in both microalgae, and their expression was measured by RT-qPCR. D/R did not alter the polydispersed profile of extracellular polysaccharides in either microalga but did induce quantitative changes in several peaks. Furthermore, medium-low-sized uronic acid-containing polysaccharides were almost completely substituted by higher molecular mass carbohydrates after D/R. Sulfated polysaccharide(s) were detected, for the first time, in the extracellular polymeric substances of both microalgae, but only increased significantly in TR9 after cyclic D/R, which induced a sugar-sulfotransferase gene and accumulated sulfated ß-D-galactofuranan(s). Biochemical remodelling of extracellular polysaccharides in aeroterrestrial desiccation-tolerant microalgae is species-specific and seems to play a role in the response to changes in environmental water availability.
Año de publicación:
2020
Keywords:
Fuente:
![scopus](/_next/image?url=%2Fscopus.png&w=128&q=75)
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Microbiología
- Microbiología
- Bioquímica
Áreas temáticas:
- Microorganismos, hongos y algas