Adaptive hybrid recommender system of learning objects


Abstract:

This paper presents the general architecture of an adaptive recommender system of learning objects, whose recommendations combine three distinct aspects: contents, collaboration and knowledge. The recommender system is implemented like a semantic web service, designed with the framework FODAS-WS, which allows the specification of computational systems using ontologies, using the ODA (Ontology Driven Architecture) paradigm.

Año de publicación:

2016

Keywords:

  • Calibration of recommenders
  • Intelligent Recommender Systems
  • Learning objects
  • Learning style

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Tecnología educativa
  • Ciencias de la computación

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos