Dual time-frequency domain system identification


Abstract:

In this paper we obtain the maximum likelihood estimate of the parameters of discrete-time linear models by using a dual time-frequency domain approach. We propose a formulation that considers a (reduced-rank) linear transformation of the available data. Such a transformation may correspond to different options: selection of time-domain data, transformation to the frequency domain, or selection of frequency-domain data obtained from time-domain samples. We use the proposed approach to identify multivariate systems represented in state-space form by using the Expectation-Maximisation algorithm. We illustrate the benefits of the approach via numerical examples. © 2012 Elsevier Ltd. All rights reserved.

Año de publicación:

2012

Keywords:

  • Maximum likelihood
  • Robust system identification

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Procesamiento de señales

Áreas temáticas:

  • Física aplicada
  • Ingeniería y operaciones afines