Dual unification of bi-class support vector machine formulations
Abstract:
Support vector machine (SVM) theory was originally developed on the basis of a linearly separable binary classification problem, and other approaches have been later introduced for this problem. In this paper it is demonstrated that all these approaches admit the same dual problem formulation in the linearly separable case and that all the solutions are equivalent. For the non-linearly separable case, all the approaches can also be formulated as a unique dual optimization problem, however, their solutions are not equivalent. Discussions and remarks in the article point to an in-depth comparison between SVM formulations and associated parameters. © 2006 Pattern Recognition Society.
Año de publicación:
2006
Keywords:
- Large margin principle
- SVM
- Convex hull
- Bi-classification
- Optimization
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
Áreas temáticas de Dewey:
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad